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Abstract—The problem of blind audio source separation
(BASS) in noisy and reverberant conditions is addressed by a
novel approach, termed Global and LOcal Simplex Separation
(GLOSS), which integrates full- and narrow-band simplex rep-
resentations. We show that the eigenvectors of the correlation
matrix between time frames in a certain frequency band form
a simplex that organizes the frames according to the speaker
activities in the corresponding band. We propose to build two
simplex representations: one global based on a broad frequency
band and one local based on a narrow band. In turn, the two
representations are combined to determine the dominant speaker
in each time-frequency (TF) bin. Using the identified dominating
speakers, a spectral mask is computed and is utilized for extract-
ing each of the speakers using spatial beamforming followed by
spectral postfiltering. The performance of the proposed algorithm
is demonstrated using real-life recordings in various noisy and
reverberant conditions.

Index Terms—blind audio source separation (BASS), simplex,
spectral mask, relative transfer function (RTF), beamformer.

I. INTRODUCTION

Multichannel blind audio source separation (BASS) aims at
extracting the individual source signals from multi-microphone
recordings of a mixture with several concurrently active speak-
ers [1]. Audio separation capabilities are required in various
multi-microphone devices, such as: smart-phones, smart voice
assistants and hearing aids, thus leading to an intense research
in the field over the last decades [2]–[4]. However, existing
algorithms typically suffer from artifacts and distortions, per-
formance degradation in noisy and reverberant conditions, and
high computational burden.

In general, in BASS no prior knowledge is available on the
speakers and their positions. Most methods rely on some as-
sumptions on the characteristics of the source signals. Assum-
ing independence of the original source signals facilitates the
use of independent component analysis (ICA) and independent
vector analysis (IVA) separation methods [5]–[9]. Separation
algorithms based on non-negative matrix factorization (NMF)
rely on the assumption that the spectrum of the speakers
can be decomposed as a multiplication of two nonnegative
components, namely, a dictionary of recurring patterns and
activation coefficients [10]–[14].
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Another widely used assumption is that speech is W-disjoint
orthogonal in the spectral-temporal domain, specifying that
each TF bin in the short time Fourier transform (STFT)
representation of the audio mixture is dominated by a single
speaker [15]. Following this assumption, a large variety of
algorithms were developed, aiming to form a spectral mask,
which consists of the dominant speaker in each TF bin.
Commonly, the mask is estimated using clustering methods
that group together TF bins belonging to each speaker. Several
methods perform clustering of all frequencies at once, using
the phase difference or the time difference of arrival (TDOA)
as a common thread that ties together the different frequencies
to a specific speaker in a certain position [15]–[17]. These
methods are usually greatly affected by reverberation, since
additional reflections from various directions hide the direct
path between the speakers and the microphones. Robustness
to reverberation can be achieved by performing clustering
according to the full reflection pattern associated with each
speaker [18]–[20]. However, for these methods the clustering
is implemented in each frequency separately, thus the identity
of the extracted speakers may be different in different frequen-
cies. Several methods exist for solving this permutation ambi-
guity problem, for instance, based on the TDOA or based on
similar time-activity patterns of neighbouring frequencies [18],
[21]. Unfortunately, such an additional permutation alignment
stage increases the computational complexity, and may lead
to sub-optimal performance when a perfect alignment is not
achieved.

Recently, new deep neural network (DNN) techniques were
harnessed to the BASS problem [22]. While most papers focus
on single-channel separation, there are a few methods utilizing
multi-microphone settings. In [23] a mask is learned using
a neural-network that receives features based on estimated
source positions, and is applied to the output of a delay-
and-sum beamformer. In [24] a multichannel Wiener filter
is derived combining source spectra that are estimated by
DNNs, and spatial information that is inferred from a classical
multichannel Gaussian model. Deep-clustering [25] is a single-
channel method in which a multi-layered bidirectional long
short term memory network (BLSTM) learns an embedding
for each TF, such that embeddings belonging to the same
speaker are close. In [26] the embedding generated by deep-
clustering was extended to a multichannel scenario by adding
spatial features as an additional input to the network. This
approach was further improved in [27], where the separation
is initially performed by a network designed for a two-
channel input, and the outputs of this network for all pairs



2

of microphones are merged into a single feature that is fed
to an additional enhancement network. In [28] deep cluster-
ing embeddings were integrated into a statistical model that
combines the spectral information provided by the extracted
embeddings with spatial information. In [29], [30] it was
proposed to train a DNN to identify the number of concurrent
speakers in each frame. The separation is performed by
a beamformer constructed using a noise correlation matrix
that is estimated during noise-only frames, and steering vec-
tors that are estimated during single-speaker frames. Despite
showing promising high-quality separation, most DNN-based
approaches require a large amount of examples for training
the respective networks. In addition, there is usually no guar-
antee that DNNs can generalize well to different scenarios,
i.e. different number of speakers, acoustic conditions, array
geometries, etc., beyond the examples that were used during
training.

In this paper we present a novel algorithm for BASS, which
aims at estimating a spectral mask, relying on the speech
sparsity in the TF domain. The estimation is performed by a
dual-stage approach. In the first stage we extract features for
each frame based on a concatenation of several frequencies
in a broad frequency band, and compute a correlation matrix
between the features of all frames. The eigenvalue decompo-
sition (EVD) of the correlation matrix is computed, and the
eigenvectors spanning the matrix column space are shown to
form a global representation that is organized in the shape of a
simplex. Based on this representation, the global probabilities
of activity of the speakers in each frame can be identified. In
the next stage, we repeat the same process for each frequency
bin separately, namely, we compute the correlation matrix
between all frames based on each single frequency and extract
the corresponding EVD. The eigenvectors computed based on
a certain frequency form a local representation that organizes
the frames according to the dominance of the speakers in this
frequency. We combine the distances between frames in the
local representation with the global probabilities, computed
in the first stage, to infer the dominant speaker in each TF
bin, which forms the estimated spectral mask. Due to the
fact that for each frequency the dominant speaker is identified
using the same global probabilities, we avoid the permutation
ambiguity of speaker identities across different frequencies.
For the separation, we first exploit the spatial diversity of
the speakers by applying a beamformer, which is constructed
based on the different acoustic systems of the speakers that are
estimated using the extracted spectral mask. The separation is
further enhanced by multiplying the beamformer output by
a single-channel postfilter that is determined by the spectral
mask. The proposed algorithm is termed Global and LOcal
Simplex Separation (GLOSS).

The current contribution is closely related to our recently
proposed simplex-based separation algorithm [31]. The algo-
rithm in [31] is built upon the global simplex representation
of all frequencies together, and therefore only provides a
frame-wise decision about the activity of the speakers, and
detects entire time frames dominated by each speaker. As
the number of speakers increases, most frames consist of
multiple active speakers and only few frames are dominated

by a single speaker. Note also that since only frame-wise
dominance is estimated in [31], the spectral sparsity of the
speakers cannot be utilized during separation, and therefore
only a beamforming-based separation is applied. In addition,
in [31] only a noiseless scenario is considered. Furthermore,
the approach for detecting the number of speakers in [31]
is based on applying a threshold decision to the eigenvalues
of the correlation matrix, where the threshold value is set
manually. Determining the threshold value is not discussed
in [31], and is often sensitive to the reverberation level and to
the number of speakers.

In this paper we rely on the theoretical foundations pre-
sented in [31], while extendeding them and deriving an
improved algorithm. In addition to the global representation
of [31], we compute a local representation for each frequency
separately, and present a new approach to tie together all
the local representations according to the global probabilities
in order to estimate the full TF mask. Furthermore, here
we address a more practical setting that includes noise, and
extend the simplex representation derived in [31] accordingly.
In addition, we derive an improved procedure for detecting
the number of speakers by a support vector machine (SVM)
classifier [32] that is applied to the eigenvalues of the corre-
lation matrix. In the experimental study, we use a dataset of
real-life recordings with a large variety of both female and
male speakers. We show that the proposed GLOSS algorithm
significantly outperforms the algorithm in [31], obtaining
higher separation scores when tested under various conditions.

The remainder of the paper is organized as follows. Sec-
tion II presents the problem formulation. Section III describes
the probabilistic model and the derivation of the simplex
representation, which serve as a basis for the spectral mask es-
timation procedure by the GLOSS algorithm that is described
in Section IV. The utilization of the estimated spectral mask
for separation and enhancement is presented in Section V.
The estimation of the number of speakers is discussed in
Section VI. Section VII demonstrates the performance of
the proposed GLOSS algorithm based on both real-life and
simulated data with comparison to several baseline methods.
The paper is concluded in Section VIII.

II. PROBLEM FORMULATION

Consider J concurrent speakers located in a reverberant and
noisy enclosure. The signals are measured by an array of M
microphones, and are analysed in the STFT domain. The signal
measured by the mth microphone is given by:

Y m(l, f) =

J∑
j=1

Y mj (l, f) +Nm(l, f)

=

J∑
j=1

Amj (f)Sj(l, f) +Nm(l, f) (1)

where Amj (f) is the acoustic transfer function (ATF) relating
the jth speaker and the mth microphone, Sj(l, f) is the signal
emitted by the jth speaker, and Nm(l, f) is the noise signal at
the mth microphone. Here f ∈ {1, . . . ,K} is the frequency
bin and l ∈ {1, . . . , L} is the frame index. Note that in a
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typical reverberant enclosure, the ATF Amj (f) consists of the
direct path between the source and the microphone as well as
the reflections from the different surfaces and objects in the
enclosure.

By the assumption of the speech sparsity in the STFT
domain [15], each TF bin is dominated by either one of the
speakers or consists of noise i.e.:

Y m(l, f) =

{
Amj (f)Sj(l, f) if (l, f) ∈ Sj
Nm(l, f) if (l, f) ∈ N

(2)

where Sj denotes the collection of TF bins dominated by the
jth speaker:

Sj =(l, f)

∣∣∣∣∣ |Y 1
j (l, f)|2 �

 J∑
i=1
i6=j

|Y 1
i (l, f)|2 + |N1(l, f)|2




(3)

and N denotes the set of remaining TFs that are not dominated
by any of the speakers, hence are considered noisy:

N =

(l, f)

∣∣∣∣∣ (l, f) 6∈
J⋃
j=1

Sj

 . (4)

Let {M(l, f)}l,f denote the spectral mask that assigns each
TF bin with its dominating component, either one of the J
speakers or the noise:

M(l, f) =

{
j if (l, f) ∈ Sj
J + 1 if (l, f) ∈ N .

(5)

Our goal is to recover the number of speakers J and to
extract each of the individual speakers while suppressing the
other speakers and the background noise. The separation will
be performed based on a spectral mask, whose estimation
is at the core of the proposed method. The signals of the
different speakers will be extracted using a dual-stage process:
first applying a multichannel beamformer that optimally com-
bines the signals measured by the M microphones, and then
implementing a single-channel postfilter. The multichannel
beamformer, as well as the single-channel postfilter, are both
implemented using the estimated spectral mask.

III. SIMPLEX-SHAPED REPRESENTATION OF SPEAKER
AND NOISE ACTIVITIES

In this section we describe how to extract a representation
that organizes time-frames in a simplex that encodes the prob-
ability of activity of the speakers within each frame in a certain
frequency band. We start with some preliminary probabilistic
assumptions. Next, we define features that are extracted for
each frame, and describe how to exploit the extracted features
for deriving the simplex-shaped representation, while relying
on the assumed probabilistic model.

A. Probabilistic Model
We assume that the dominant component is independently

randomly selected in each TF bin according to:

M(l, f) =

{
j, 1 ≤ j ≤ J with probability pj(l)
J + 1 with probability 1−

∑J
j=1 pj(l)

(6)
where

∑
j pj(l) ≤ 1. Note that the probabilities {pj(l)}Jj=1

depend only on the frame index and not on the frequency
index.

For each TF bin, consider the following ratio between the
mth microphone and the first microphone that serves as a
reference microphone:

Rm(l, k) =
Y m(l, f)

Y 1(l, f)
(7)

Based on the sparsity assumption (2) we get:

Rm(l, f) =

{
Hm
j (f) if M(l, f) = j, 1 ≤ j ≤ J

η(l, f) if M(l, f) = J + 1
(8)

where

Hm
j (f) =

Amj (f)

A1
j (f)

. (9)

is the relative transfer function (RTF) [33], [34] defined as the
ratio between the ATF of the mth microphone and the ATF of
the reference microphone, both of which are associated with
the jth speaker. Here η(l, f) = Nm(l, f)/N1(l, f) is a noise
term that is both frequency and frame dependent. According
to (8), the ratio Rm(l, f) is the RTF of one of the speakers
Hm
j (f) or a noise term η(l, f).
We assume that the RTFs and the noise terms are in-

dependent zero-mean random variables. The RTFs of dif-
ferent speakers, frequencies or microphones are assumed to
be independent, and the same holds for the noise terms of
different frequencies or frames. Further discussion on the
validity of these assumptions can be found in [31]. For
the sake of simplicity, we assume that the variance of the
real and the imaginary parts of each RTF equals 1, i.e.
E
{

real{Hm
j (f)}2

}
= E

{
imag{Hm

j (f)}2
}

= 1. Note that
the following derivation also holds for non-unit and non-
constant variance by applying a proper normalization. We
comment that the noise is assumed to be non-directional. Di-
rectional noises can be treated as additional sources, increasing
J accordingly.

B. Feature Extraction
Based on the computed ratios (7) in each TF bin, we extract

a feature vector r(l) for each frame l by concatenating the
ratios of all microphones in a specific frequency band. The
vector r(l) consists of D = 2 · (M − 1) · F elements of
the real and imaginary parts of the ratios, in 1 ≤ F ≤ K
frequency bins and in M − 1 microphones (except for the
reference microphone):

rm(l) = [Rm(l, f1), Rm(l, f2), . . . , Rm(l, fF )]
T

rc(l) =
[
r2,T (l), r3,T (l), . . . , rM,T (l)

]T
r(l) =

[
real {rc(l)}T , imag {rc(l)}T

]T
. (10)
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where F = {f1, f2, . . . , fK} is the chosen frequency band.
We compute (7) and (10) for each frame 1 ≤ l ≤ L, and

form the set {r(l)}Ll=1 of all features. The feature vectors can
be related to a set of J unknown RTF vectors of the same
dimension, which consists of the RTF values of each of the
speakers. Let hj denote an RTF vector associated with the jth
speaker. Similarly to the definition of (10), each RTF vector
consists of the real and imaginary parts of the RTF values, in
F frequency bins and in M − 1 microphones:

hmj =
[
Hm
j (f1), Hm

j (f2), . . . ,Hm
j (fF )

]T
hc
j =

[
h2,T
j ,h3,T

j , . . . ,hM,T
j

]T
(11)

hj =
[
real

{
hc
j

}T
, imag

{
hc
j

}T ]T
.

According to (8), each entry of the feature vector r(l) is
associated with an entry of one of the RTF vectors (11) or
to a noise term. The expected number of entries in the vector
r(l) corresponding to a particular RTF hj is given by the
probability pj(l) of the jth speaker:

E

{
1

D

D∑
k=1

[r(l, k) = hj(k)]

}

=
1

D

D∑
k=1

E {[r(l, k) = hj(k)]} = pj(l) (12)

where r(l, k) and hj(k) denote the kth entry of the vectors
r(l) and hj , respectively.

In Fig. 1, we illustrate a mixture of J = 2 speakers. In the
illustration, there are two RTF vectors of the two speakers,
colored by shades of red and blue. An example of a feature
vector r(l∗), associated with frame l∗, is also presented. The
entries of r(l∗) are in red shade, blue shade or gray texture if
dominated by the first speaker, the second speaker or noise,
respectively. The probabilities associated with frame l∗ are
written above the feature vector: p1(l∗) = 0.5 for the first
speaker, and p2(l∗) = 0.2 for the second speaker. Hence, in
the feature vector r(l∗), 50% of the entries are identical to
entries in h1, 20% of the entries are identical to entries in h2,
and 30% of the entries are noisy. Note that in this example, the
number of entries in r(l∗) corresponding to each RTF vector
exactly matches the associated probability, while in practice
it is only approximately satisfied due to randomness in the
selection of the most dominant component in each entry.

C. Simplex-Shaped Representation
We describe the derivation of the simplex-shaped repre-

sentation based on the derived features (10). According to
the probabilistic model presented in Section III-A, the inner-
product between each two features r(l) and r(n), 1 ≤ l, n ≤ L
is given by:

1

D
rT (l)r(n) =

{ ∑J
j=1 pj(l)pj(n) if l 6= n∑J
j=1 pj(l) if l = n

. (13)

The derivation of (13) is given in Appendix A, showing
that this inner-product between the features approximates the
correlation between each two entries of the feature vectors.

Fig. 1. An illustration of the presented statistical mixture model. In this
example there are J = 2 speakers associated with 2 unknown RTF vectors
{hj}2j=1. Each RTF vector consists of D = 10 elements, characterized by
varying shades of red or blue. An example of a feature vector associated with
frame l∗ is also illustrated. Dashed lines are drown between each entry in
r(l∗) and the associated entry of the RTF vector from which it originated.
Entries dominated by noise are colored by gray texture. The set of probabilities
[p1(l), p2(l)] used to construct r(l∗) is written above it. Note that in this
example, the number of entries corresponding to each RTF exactly matches
the associated probability, while in practice it is only approximately satisfied.

Let W be the L × L correlation matrix, with Wln =
1
DrT (l)r(n). According to (13) the correlation matrix can be
recast as:

W = PPT + ∆W (14)

where P is an L×J matrix, whose rows consist of the proba-
bilities associated with each frame, i.e. Plj = pj(l), and ∆W

is a diagonal matrix with ∆Wll =
∑J
j=1(1− pj(l))pj(l) ≤ 1

on its main diagonal and zero elsewhere. The matrix ∆W
has a negligible effect on the spectral decomposition of W
(which can be shown using similar considerations to the ones
presented in Appendix B in [31]). Therefore, henceforth we
omit ∆W from our derivations, and resort to the approxima-
tion of the correlation matrix by:

W ≈ PPT . (15)

Applying EVD to the correlation matrix W, sets of L eigen-
vectors {uj}Lj=1 and L eigenvalues {λj}Lj=1 are obtained. For
L > J we deduce from the above decomposition that:

rank(W) = rank(P) = J (16)

indicating that the rank of the correlation matrix is directly de-
termined by the number of speakers. We address the inference
of the number of speakers based on the information implied by
the rank of the correlation matrix in Section VI, and proceed
for now by assuming that the value of J is known.

Let UJ = [u1, . . . ,uJ ] denote an L × J matrix, which
consists of the first J eigenvectors of W associated with its
J largest eigenvalues. Based on (15), the column spaces of
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UJ and P are equal, i.e. the columns are related by a linear
invertible transformation:

UJ = PGT (17)

where G is a J × J invertible matrix.
For each frame 1 ≤ l ≤ L, we define the following mapping

vector:
ν(l) = [u1(l), u2(l), . . . , uJ(l)]T (18)

which corresponds to the lth row of the matrix UJ . Let
p(l) = [p1(l), p2(l), . . . , pJ(l)]T denote the probability vector
associated with the lth frame, corresponding to the lth row of
the matrix P. According to (17), the mapping vector ν(l) is
a linear transformation of the probability vector p(l):

ν(l) = Gp(l). (19)

By (19) we infer that the mapping ν(l) is closely related
to the probability vector p(l), which contains an important
information about the activity of the speakers. However, the
transformation from the given mappings to the unknown
probabilities is non-trivial, since the transformation matrix G
is also unknown. In order to solve the problem, we investigate
the geometrical structure of both {p(l)}Ll=1 and {ν(l)}Ll=1,
and show how it can be utilized for recovering the unknown
transformation between the two sets.

Let ej = [0, . . . , 1, . . . , 0]T ∈ RJ , 1 ≤ j ≤ J denote the
standard unit vectors, with one at the jth entry and zeros
elsewhere. The probability vectors {p(l)}Ll=1 are confined to
a J-dimensional simplex defined by the standard unit vectors:

Θ =

θ1e1 + . . .+ θJeJ

∣∣∣∣∣
J∑
j=1

θj ≤ 1, θj ≥ 0

 . (20)

The simplex structure (20) is formed due to the fact that each
probability vector can be expressed as a convex combination
of {ej}Jj=1:

p(l) =

J∑
j=1

pj(l)ej ,

J∑
j=1

pj(l) ≤ 1. (21)

Note that the simplex (20) has J + 1 vertices: J vertices at
the standard unit vectors {ej}Jj=1 and an additional vertex at
the origin (due to the fact that the sum of the probabilities can
be less than 1).

According to the linear transformation between ν(l) and
p(l) implied by (19), the mapping vectors {ν(l)}Ll=1 occupy
a simplex, which is a rotated and scaled version of the simplex
in (20):

Θ∗ =

θ1e∗1 + . . .+ θJe∗J

∣∣∣∣∣
J∑
j=1

θj ≤ 1, θj ≥ 0

 (22)

where
e∗j = Gej = gj (23)

with gj denoting the jth column of the matrix G. The trans-
formed simplex (22) also has J + 1 vertices, one in the origin
and additional J vertices at {e∗j}Jj=1. Accordingly, frames with
high probability of the jth speaker are concentrated near the

jth vertex e∗j , and noisy frames with low probability of each
of the speakers are concentrated near the origin.

Note that (23) implies that the J columns of the trans-
formation matrix G coincide with the J vertices of the
transformed simplex Θ∗ (except for the trivial vertex at the
origin). Therefore, if the vertices {e∗j}Jj=1 of the transformed
simplex (22) can be recovered among the available set of
mapping vectors {ν(l)}Ll=1, then they can be used to form the
transformation matrix G. Using the inverse of G, the mapping
vectors ν(l) can be transformed back to the probability vectors
p(l), following the relation in (19). This principle will be
utilized for recovering the probability vectors in the proposed
method that is described in Section IV.

IV. SPECTRAL MASK ESTIMATION COMBINING GLOBAL
AND LOCAL SIMPLEX REPRESENTATIONS

Our aim is to use the simplex representation derived by
the eigenvectors of the correlation matrix to obtain a spectral
mask. For this purpose, we form full- and narrow-band simplex
representations that recover the activity of the speakers in
different scales. We use a global mapping based on a broad
range of frequencies, as well as local mappings based on
single frequencies. We combine the global and the local
representations to extract information on the most dominant
component in each TF bin, and accordingly, we form the
spectral mask.

A. Global Mapping

We start with a global simplex mapping based on a broad
range of frequencies, which provides a global organization of
the frames according to the overall activity of the speakers
in each frame. To form the mapping we first compute the
ratios (7) and the feature vectors (10) based on a wide
frequency range FG. Then, the correlation matrix between all
feature vectors is constructed, and its EVD is computed. Based
on the derived eigenvectors, the global mapping denoted by
νG(l) is defined based on (18).

We use the global mapping to estimate the speaker probabil-
ities associated with each frame. Note that these probabilities
represent the global activity of the speakers in each frame,
namely, they reflect the relative dominance of each of the
speakers in the entire frame. The simplex vertices corre-
sponding to the different speakers and assigned with indexes
{lj}Jj=1, are identified using a successive projection algo-
rithm [35], [36]. This algorithm, summarized in Algorithm 1,
is based on successively identifying the simplex vertices by
maximizing the projection onto the orthogonal complement of
the space spanned by the previously identified vertices. The
recovered vertices can be used to transform the mapping νG(l)
to the speaker probabilities pG(l), by applying the inverse
transformation of (19):

pG(l) = Ĝ−1νG(l) (24)

where the matrix Ĝ is constructed according to (23), based
on the identified vertices:

Ĝ =
[
νG(l1),νG(l2), . . . ,νG(lJ)

]
. (25)
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The noise probability is given by pG
J+1(l) = 1−

∑J
j=1 p

G
j (l).

A demonstration of the global simplex representation is given
in Fig. 2. The demonstration corresponds to a mixture of
J = 2 speakers, which is generated by the setup described
in Section VII. Frames are colored according to the oracle
probability of (a) the first speaker, (b) the second speaker
(c) the noise. In this case, the simplex is of dimension 2,
consisting of three vertices: two vertices corresponding to
frames with high probability of one of the speakers, and one
vertex at the origin corresponding to noisy frames.

B. Local Mappings

We construct local mappings based on each single frequency
f ∈ {1, . . . ,K}. For each frequency we extract features (11)
of length D = 2 · (M − 1), in which the ratio values (7)
are concatenated in all microphones except for the reference
microphone. Next, we construct the correlation matrix associ-
ated with the f th frequency, compute its EVD, and derive the
mapping νL(l, f) based on (18).

We would like to recover the dominant component, either
one of the speakers or the noise, in each frame. The index of
the dominant component in each TF is chosen by combining
the relations between the local mappings νL(l, f) with the
global probabilities pG(l) estimated on the basis of the global
mapping. For each frame, the assignment is determined based
on the following weighted nearest-neighbour rule:

M(l, f) = argmax
j∈{1,...,J+1}

1

πj

L∑
n=1

ωLln(f) · pGj (n) (26)

where the weight ωLln(f) of each frame n with respect to
the inspected frame l is inversely proportional to distances in
the space defined by the local representation {νL(l, f)}Ll=1.
Particularly, we use the following Gaussian weighting based
on Mahalanobis distance:

ωLln(f) = exp
{
−
(
νL(l, f)− νL(n, f)

)T
Σ−1

×
(
νL(l, f)− νL(n, f)

)}
. (27)

where Σ is the sample covariance of {νL(l, f)}Ll=1. Note
that alternative weights that decay with respect to distances
between the local mappings can be applied as well. In (26),
πj serves as a class normalization, and is given by:

πj =

L∑
n=1

pGj (n) (28)

Note that in (26) we obtain the estimated spectral mask, where
the global mapping serves as the common thread that ties all
local mappings of each individual frequency. Since the local
mappings are aligned using the same global mapping, we cir-
cumvent possible permutation ambiguity across frequencies. In
this sense, the proposed method presents a different approach
from common separation schemes that perform clustering in
each frequency bin [18]–[20]. In contrast, in the proposed
method the association of TF bins with the different speak-
ers is formulated as a classification task, where the global
probabilities serve as labels.

The global mapping was used in [31] to identify frames with
a single active speaker. The identified single-speaker frames
were utilized for estimating the RTF of each speaker. Frames
with multiple active speakers were not utilized in [31]. Here,
we utilize all measured frames, and obtain a finer decision on
each TF bin individually.

V. SEPARATION AND ENHANCEMENT

We use the estimated spectral mask (26) to extract each of
the speakers while suppressing the other speakers and reducing
the noise level. To this end, we use a two-step approach: we
first apply a multichannel beamformer that takes advantage of
the spatial diversity of the speakers in the different positions,
and then apply a single-channel spectral masking to further
utilize the spectral diversity of the speakers in the TF domain.

In the first stage, we apply a linearly constrained minimum
variance (LCMV) beamformer, defined by:

bLCMV
j (f) = Φ−1nn(f)C(f)

(
CH(f)Φ−1nn(f)C(f)

)−1
qj

(29)
where Φvv(f) is the noise power spectral density (PSD) matrix
of size M ×M and C(f) is an M ×J matrix, which consists
of the RTFs of all speakers, i.e.:

C(f) = [c1, c2, . . . , cJ ]

cj(f) = [H1
j (f), H2

j (f), . . . ,HM
j (f)]T . (30)

In (29), qj ∈ RJ extracts the jth speaker, with one in the
jth entry and zeros elsewhere. Both the RTFs of each of the
speakers and the noise covariance matrix can be estimated
based on the derived spectral mask. The estimation of Φvv(f)
is based on frequencies dominated by the noise:

Φ̂nn(f) =
1∑L

l=1 IJ+1(l, f)

L∑
l=1

IJ+1(l, f)y(l, f)yH(l, f)

(31)
where

Ij(l, f) =

{
1 if M(l, f) = j

0 if M(l, f) 6= j
. (32)

and

y(l, f) =
[
Y 1(l, f), Y 2(l, f), . . . , YM (l, f)

]T
. (33)

An estimator of the RTF of the jth speaker, is obtained by
solving the following generalized eigenvalue decomposition
(GEVD) problem [33]:

Φ̂jj(f)ψj(f) = µΦ̂nn(f)ψj(f) (34)

where Φ̂jj(f) is computed based on TF bins dominated by
the jth speaker:

Φ̂jj(f) =
1∑L

l=1 Ij(l, f)

L∑
l=1

Ij(l, f)y(l, f)yH(l, f) (35)

Assuming ψj(f) is the eigenvector associated with the largest
eigenvalue µ, the vector c̃j = Φ̂nn(f)ψj(f) is a scaled
version of the RTF of the jth speaker. Since, by definition
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Fig. 2. Scatter plots of the global mappings {νG(l)}Ll=1 obtained from the eigenvectors of the correlation matrix W between different time frames. Scatter
plots correspond to a mixture of J = 2 speakers. Frames are colored according to the oracle probability of (a) the first speaker, (b) the second speaker (c)
the noise.

Algorithm 1: Successive Projection Algorithm [36]

• P⊥ = I
• for j = 1 : J do
� lj = argmaxl∈{1,...,L} ‖P⊥ν(l)‖22
� dj = P⊥ν(lj)
� P⊥ =

(
I− djd

T
j /‖dj‖22

)
P⊥

• end

H1
j (f) = 1, c̃j can be normalized to yield a proper estimate

of the RTF of the jth speaker:

ĉj =
c̃j

[c̃j ]1
(36)

where [c̃j ]1 denotes the first element of the vector c̃j .
The LCMV (29) implemented based on the estimated noise

PSD matrix (31) and the estimated RTFs (36) is applied to the
multichannel recordings as:

Ŷ LCMV
j (l, f) =

(
bLCMV
j (f)

)H
y(l, f) (37)

The output of the LCMV beamformer contains residual
noise and interferences, which can be further suppressed
applying single-channel masking that takes advantage of the
assumed TF sparsity of the speech signals. To this end, we
exploit again the estimated spectral mask by:

Ŷ LCMV+MASK
j (l, f) = Ij(l, f)Ŷ LCMV

j (l, f)

+ β(f) (1− Ij(l, f)) Ŷ LCMV
j (l, f) (38)

where β(f) is a frequency-dependent attenuation factor, that
is applied in noisy TF bins to obtain a smoother frequency
behaviour, thus mitigating musical noise effects. The proposed
method is termed Global and LOcal Simplex Separation
(GLOSS) and is summarized in Algorithm 3.

VI. SPEAKER COUNTING

In this section we address the problem of estimating the
unknown number of speakers J . According to (16) the rank
of the correlation matrix W equals J , therefore directly

Algorithm 2: Simplex Mapping

• Construct ratio vectors {r(l)}Ll=1 (10) based on the
frequencies in the set F .

• Compute the correlation matrix W by
Wln = 1

DrT (l)r(n).
• Apply EVD to W to obtain {uj}Lj=1.
• Construct ν(l) = [u1(l),u2(l), . . . ,uJ(l)].

indicates the number of speakers. However, in practice, due to
estimation inaccuracies the matrix is full-rank. The decay of
the eigenvalues should reflect the matrix expected theoretical
rank. In [31] we proposed to determine the number of speakers
using a threshold rule on the eigenvalues. This approach has a
disadvantage since it is not clear how the threshold should be
determined. Moreover, we have shown in [31] that the optimal
threshold is influenced by the reverberation time, preferring
higher threshold values as the reverberation time increases. In
addition, as the number of speakers increases, the spread of
the eigenvalues also increases, i.e. lower threshold values are
required for increasing number of speakers.

Here we propose a more robust approach for determining
the number of speakers. We formulate the problem as a
classification task in which each class represents a different
number of speakers. The classifier is built based on a training
set of prerecorded measurements with varying number of
speakers in different conditions. The feature given as an input
to the classifier is a vector consisting of the first τ eigenvalues
of the correlation matrix:

ψ = [λ1, λ2, . . . , λτ ]T (39)

where τ equals (at least) to the maximum possible number
of speakers. The problem is linearly separable as the value
of λj (the jth coordinate ψ) distinguishes between classes
with number of speakers smaller than j to classes with
number of speakers larger than j. This property is illustrated
in Fig. 3. The illustration corresponds to recordings with
J ∈ {1, 2, 3, 4} speakers. The full setup for genertaing this
illustration will be described in Section VII. Each point in
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Algorithm 3: GLOSS Algorithm
Feature Extraction:
• Compute ratios {Rm(l, f)}l,f,m (7).

Global Simplex Mapping:
• Construct global mapping {νG(l)}Ll=1 applying

Algorithm 2 on a global frequency range FG.
• Recover simplex vertices {lj}Jj=1 by Algorithm 1.
• Estimate global probabilities {pG(l)}Ll=1 (24)-(25).

Local Simplex Mapping:
• for each frequency f = 1 : K:
� Construct the local mapping {νL(l, f)}Ll=1

applying Algorithm 1 on frequency f .
� Compute weights {ωLln(f)}l,n (27).
� Estimate the mask M(l, f) (26) for each frame.

end
Separation and Enhancement
• Estimate noise PSD Φ̂nn(f) from M(l, f), y(l) (31).
• Estimate RTFs of all speakers {ĉj}Jj=1 from M(l, f),

y(l), Φ̂nn(f) (34)-(36).
• Compute the LCMV beamformer bLCMV

j (f) from
Φ̂nn(f), {ĉj}Jj=1 (29).

• Obtain Ŷ LCMV
j (l, f) by applying the LCMV

beamformer bLCMV
j (f) on y(l) (37).

• Obtain Ŷ LCMV+MASK
j (l, f) by applying a

single-channel spectral masking on Ŷ LCMV
j (l, f) (38).

the figure represents a single recording, colored according to
the corresponding number of speakers. Since it is difficult to
present a demonstration with more than two dimensions, we
split the presentation into three figures, where in Fig. 3 (a) the
axes correspond to λ1 and λ2, in Fig. 3 (b) the axes correspond
to λ2 and λ3, and in Fig. 3 (c) the axes correspond to λ3 and
λ4. In Fig. 3 (a) we observe that the value of λ2 distinguishes
between recordings with a single speaker to recordings with
two or more speakers. Fig. 3 (b) shows that the value of
λ3 distinguishes between recordings with two speakers to
recordings with three or four speakers, while recordings with
a single speaker are concentrated near the origin. Similarly,
in Fig. 3 (c) the value of λ4 distinguishes between recordings
with three speakers to recordings with four speakers, while
recordings with one or two speakers are concentrated near the
origin. Motivated by this observation, we propose to use a
linear classifier such as the multiclass SVM classifier [32].

Note that as opposed to the proposed separation algorithm,
which is entirely unsupervised, the proposed speaker counting
scheme is supervised, and requires a set of prerecorded or
simulated measurements. For these measurements we need
to know only the number of participating speakers, and not
the signals of the individual speakers. Therefore, this type of
training data can be easily collected.

VII. EXPERIMENTAL STUDY

In this section we present a performance evaluation of the
proposed GLOSS algorithm using several datasets with both

simulated and real-life measurements. We first present the
separation performance assuming that the correct number of
speakers is known, and evaluate the source counting accuracy
in a separate experiment.

First, a comprehensive performance evaluation is carried out
using real-life measurements recorded at the Bar-Ilan Univer-
sity (BIU) acoustic lab. We start by describing the real-life
recording setup. Next, we list the performance measures used
for assessment of the separation performance and describe
the baseline methods that are used for comparison. Finally,
the separation results are presented under various conditions.
In addition, we compare the proposed method to two recent
DNN-based separation algorithms [26], [37] using the same
datasets that were used by the authors for evaluating their
proposed methods. Finally, we present the performance of the
proposed procedure for source counting.

A. Experimental Setup
The recordings are carried out at the BIU acoustic lab,

which is a 6×6×2.4 room covered by two sided controllable
panels that can be configured in different ways to imitate
various reverberation conditions. Two lab configurations of
two reverberation levels were tested, namely low reverberation
with T60 ≈ 150 ms and high reverberation with T60 ≈ 550 ms.
In the room, a rectangular table was placed with six chairs
around it. Signals were recorded by 32 microphones. On
the table 24 microphones were placed: 6 microphones were
set in a uniform linear array (ULA), 18 microphones were
set in 6 nodes of 3 microphones each, and the remaining 8
microphones were placed around the table in 4 nodes of 2
microphones each. A top view of the recording setup is de-
picted in Fig. 4(a) and a photograph of the room configuration
is presented in Fig. 4(b).

Twenty native English speakers were recorded while sitting
on the chairs around the table: 10 males and 10 females. Each
speaker was recorded separately, in order to allow flexibility in
forming different mixtures with different number of speakers,
at various locations. Each speaker was recorded 12 times while
sitting in each one of the 6 chairs, and repeated twice for
the two reverberation levels. Each recording is 55s length, in
which the speaker was recorded reading 5 sentences of about
5 s long each, and a pause of 5s between two successive
sentences. For each speaker and for each recording, different
sentences were used. The sampling rate was 48kHz.

In addition, two noise types were recorded separately. The
first is an air-conditioner noise, which is the sound produced
by the air-conditioner, located at the top of one of the walls in
the lab, as shown in Fig. 4 (b). This noise was recorded by all
the microphones, while the air-conditioner was on. The second
type of noise imitates a diffuse noise field, arriving evenly
from all directions. To generate this noise, 8 loudspeakers were
placed near the lab’s walls (one at every corner of the room
and one at the middle of each of the walls, as illustrated in
Fig. 4 (a)). The loudspeakers were directed towards the walls
and were recorded by the microphones while playing babble
noises.

For the evaluation in the current experimental study, we use
a subset of 8 microphones with indexes {25, 26, . . . , 32}. The
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Fig. 3. Scatter plots corresponding to recordings with J ∈ {1, 2, 3, 4} speakers. Each point represents a single recording, colored according to the
corresponding number of speakers. In (a) the axes correspond to λ1 and λ2, in (b) the axes correspond to λ2 and λ3, and in (c) the axes correspond to λ3
and λ4.
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Fig. 4. The room layout (a) and a photo of the room setup (b) of the
experiments conducted at the BIU acoustic lab.

mixtures are generated by choosing J speakers at J different
chairs. To ensure that the signals are not fully aligned by their
speech and silence segments, we choose for each signal a
random initial starting point, uniformly drawn between 1−3s,
and sum all the signals to form the mixture. At the beginning
of each mixture signal there is a 0.5s long segment without
speech, and the signals are truncated to a fixed length of 20s. A
typical activity timeline of the speakers for J = 4 is depicted
in Fig. 5. The signals were downsampled to 16kHz, and were

(a)

Fig. 5. Representative temporal activities of a mixture of J = 4 speakers,
with random initial point of each speaker.

analysed using the STFT with window size of 2048 samples,
and 75% overlap between adjacent frames.

B. Performance Measures & Competing Algorithms

The separation performance is assessed by the signal to
interference ratio (SIR) and the signal to distortion ratio (SDR)
measures, computed using the BSS-Eval Toolbox [38].

The results of the proposed GLOSS algorithm are compared
to the IVA algorithm [8], [39] and to our previously proposed
simplex-based algorithm [31] (‘Global’), which extracts a
single global simplex representation, and identifies frames
dominated by each speaker. Based on these frames, the RTFs
and the noise covariance matrix are estimated, which, in turn,
are utilized for implementing the LCMV beamformer (29).
This method consists of only the beamforming (37) without
the spectral masking (38), since the method does not include
spectral mask estimation. For both the the GLOSS algorithm
and [31] we extract the global mapping based on the frequency
range 1, 000− 2, 000 kHz. Note that for extracting the global
mapping we do not include low frequencies, which mostly
contain noise, as well as high frequencies, in which there
is typically only low speech energy. The local mapping is
performed for each of the 2048 frequency bins in the range
0− 8, 000 kHz.

We further comment on the choice of the frequency range
1 − 2kHz for the global mapping. This range was chosen
since it provided good performance in all examined scenarios,
i.e. different noise types and microphone constellations. Note
that in the case of babble noise the bandwidths of the noise
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and the speech spectra are similar, but there is a difference
in their characteristics. Speech signals are sparse in the TF
domain, namely, there are high-power components only in
several frequencies, while in the rest of the frequencies the
power is very low. In contrast, the babble noise consists of
several speech signals, hence its power is more spread over the
different frequencies. Therefore, in frequencies where speech
components are present, their power usually dominates the
power of the babble noise. Following this distinction, the
chosen frequency range can be used to detect the global
activity of the speakers within each frame.

In addition, we compare the results to an ideal separator
that implements (37) and (38) based on an ideal binary mask,
defined as:

Mi(l, f) =argmax
1≤j≤J

|Y 1
j (l, f)| if max

1≤j≤J
|Y 1
j (l, f)| > |N(l, f)|

J + 1 Otherwise
.

(40)

For both the ideal separator and the proposed method we
implement the single-channel masking (38) using a fixed
attenuation factor of β(f) = 0.1, ∀1 ≤ f ≤ 2048.

C. Experimental Results

In this section, we present the separation performance with
respect to the noise level and the number of speakers, where
in all examinations the correct number of speakers is assumed
to be known. For each condition, the scores are averaged
over 50 mixtures, generated with various random combinations
of speakers and chairs. We first present the results obtained
for mixtures of J = 4 speakers and for both reverberation
levels with various noise levels. Figure 6 presents the SIR and
the SDR scores obtained by all algorithms as a function of
the input signal to noise ratio (SNR) for diffuse noise (a)-
(b) and for air-conditioner noise (c)-(d). Similar trends are
observed for both noise types. It can be seen that all methods
obtain lower separation scores as the level of reverberation
increases. Regarding the influence of SNR levels, there is
a noticeable decrease in the performance only in low SNR
of 5dB. As expected, the ideal separator always achieves the
best results. The proposed GLOSS algorithm obtains superior
results compared to both the global approach [31] and the IVA
algorithm for all SNR and reverberation levels. Sound samples
can be found on the lab website.1

In addition, we examine the performance with respect to the
number of speakers in the mixture. Figure 7 presents the SIR
and the SDR scores obtained by all algorithms as a function
of the number of speakers for both reverberation levels, in the
presence of diffuse noise with 20dB SNR. It can be observed
that the performance measures of all algorithms decrease as
the number of speakers increases. Here as well, the proposed
GLOSS algorithm outperforms both competing algorithms.

1www.eng.biu.ac.il/gannot/speech-enhancement/

D. Comparison to DDESS Algorithm

The proposed GLOSS algorithm is also compared to a
recently proposed deep direction estimation for speech sep-
aration (DDESS) algorithm [37]. The DDESS algorithm is
built upon a U-net architecture that receives the phase of
the instantaneous RTFs and infers the direction of arrival
(DOA) of each TF bin. Separation is obtained by multiplying
the reference microphone by the masks associated with the
different DOAs. The performance is evaluated on the dataset
used in [37], which consists of mixtures of J = 2 speakers,
formed by clean signals from the Wall Street Journal (WSJ)
database [40] that are convolved with room impulse responses
(RIRs) recorded at the BIU acoustic lab [41]. The RIRs
correspond to a ULA of M = 8 microphones with inter-
distances of (8, 8, 8, 3, 8, 8, 8) cm. The speakers are positioned
at radius of 1 m or 2 m with respect to the array center, at a
relative angle from the set {0◦, 15◦, . . . , 180◦}. Further details
on the examined setup can be found in [37].

Table I summarizes the results for both radii: 1 m or 2 m,
and for two reverberation levels: 160 ms or 360 ms. Note that
in the DDESS method only spectral masking is applied (38)
without the preceding beamforming step (37). Therefore, here
we present the scores of the GLOSS algorithm with spec-
tral masking only (‘GLOSS Mask’), with beamforming only
(‘GLOSS LCMV’) and with both beamforming and spectral
masking (‘GLOSS Full’). We observe a clear advantage of the
GLOSS algorithm compared to both the IVA and the DDESS
methods, even when using spectral-masking or beamforming
only. The SIR scores are further improved using the proposed
two-stage separation of multichannel beamforming followed
by single-channel spectral postfiltering.

E. Comparison to Multichannel Deep Clustering Algorithm

We also compare the proposed GLOSS algorithm to the
multichannel deep clustering algorithm [26], using the multi-
channel corpus presented in their paper. Since the proposed
GLOSS algorithm is unsupervised, only the test set, which
consists of 3000 (∼ 5h) utterances, is used. This set is
generated using the code provided by the authors,2 by first
creating mixtures of 2 speakers drawn from WSJ0, and then,
convolving them with various simulated room impulse re-
sponses. To this end, two randomly selected utterances of
speakers in the WSJ0 development and evaluation sets are
mixed with SIR randomly drawn from −5dB and +5dB. The
chosen re-scaled utterances are convolved with RIRs simulated
by the image method [42], using the simulator in [43] with the
following random characteristics: the aperture sizes sampled
from 15cm to 25cm; the reverberation time drawn from 0.2s to
0.6s; the average distance between speaker and array center is
1.3m with 0.4m standard deviation; and the average direct-
to-reverberant energy ratio is 2.5dB with 3.8dB standard
deviation. The proposed GLOSS algorithm is implemented
over the generated test set using a 4-microphone array. The
obtained average SIR and SDR scores are 19.1 dB and 9.3 dB,
respectively. The obtained SDR is similar to the score reported

2www.merl.com/demos/deep-clustering/spatialize wsj0-mix.zip
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Fig. 6. SIR and SDR scores as a function of the input SNR for diffuse (a),(b) and air-conditioner (c),(d) noises. Performance is evaluated for both low and
high reverberation conditions, marked by solid and dashed lines, respectively.

TABLE I
SEPARATION PERFORMANCE DEPENDING ON THE DISTANCE FROM THE ARRAY CENTER AND THE REVERBERATION TIME (J = 2 SPEAKERS). THE

PROPOSED GLOSS ALGORITHM IS COMPARED TO IVA [8] AND DDESS [37] ALGORITHMS.

Method 1m 2m

160ms 360ms 160ms 360ms

SIR (dB) SDR (dB) SIR (dB) SDR (dB) SIR (dB) SDR (dB) SIR (dB) SDR (dB)

IVA 13.5 7.3 9.3 4.1 10.4 4.5 7.6 3.0
DDESS 10.4 1.8 9.3 1.6 9.9 2.8 7.5 0.3

GLOSS Mask 14.2 8.9 13.1 7.9 13 8.1 12.9 8.1
GLOSS LCMV 17.5 11.6 14.2 7.8 13.6 8.6 12.0 6.7

GLOSS Full 23.0 10.2 19.6 8.3 20.0 9.0 18.3 7.9
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Fig. 7. SIR and SDR scores as a function of the number of speakers for diffuse noise with 20dB SNR. Performance is evaluated for both low and high
reverberation conditions, marked by solid and dashed lines, respectively.

for the multichannel deep clustering algorithm in [26], which
is also 9.3dB. This comparison shows that the performance
of the GLOSS algorithm is comparable to that of state-of-
the-art deep-learning based separation algorithm, while being
completely unsupervised, given that the number of speakers is
known.

F. Source Counting Performance

We examine the performance of the proposed source count-
ing scheme derived in Section VI. We focus on estimating the
number of speakers in the range J ∈ {1, 2, 3, 4}. We used
mutually exclusive sets of data for training and testing with
different array geometries and source positions. The training
data is generated using recorded RIRs of an 8-microphone
ULA as described in Section VII-D, corresponding to three
reverberation levels: 160 ms, 360 ms and 610 ms. For each
number of speakers J ∈ {1, 2, 3, 4} and for each reverberation
level T60 ∈ {160, 360, 610}ms, we generated 50 examples
with different speakers at different locations, resulting in a
total amount of 4×3×50 = 600 training examples. No noise
was added to the training data. For testing the performance
we used real-recorded data contaminated by diffuse noise,
corresponding to the setup described in Section VII-A. For
each number of speakers and reverberation level, we generated
200 examples with different speakers in different locations,
resulting in a total amount of 4×2×200 = 1600 test examples.
We trained a multiclass SVM classifier with input vectors
corresponding to the first 4 eigenvalues of the correlation
matrix computed for each recording.

The results obtained for both reverberation levels and 20dB
SNR are summarized in a confusion matrix, depicted in Fig. 8.

1 2 3 4
Predicted class

1

2

3

4Tr
ue

 c
la

ss

15

19

3

23

21

4

4

18

15

7

52

373

360

308

378

6.8%

10.0%

23.0%

5.5%

93.3%

90.0%

77.0%

94.5%

9.0% 11.8% 10.7% 13.5%

91.0% 88.2% 89.3% 86.5%

Fig. 8. Confusion matrix for detecting the number of speakers in the range
J ∈ {1, 2, 3, 4}.

We observe that the precision values (the bottom summarizing
table) are quite similar for the different classes, with average
value of 88.75%. With respect to the recall values (the right
summarizing table), we have the best scores for mixtures with
a single speaker or with four speakers. The average recall
among all classes is 88.7%. The classifier largest error is for
3 speakers that are misclassified as 4 speakers. This can be
explained using the demonstration in Fig. 3 (c), where we
can see that recordings with 3 and 4 speakers are not fully
separated. Overall, we conclude that we obtain high scores
despite the fact that the training and the testing are performed
in completely different conditions.

In addition, we examine the speaker counting performance
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Fig. 9. Counting Accuracy versus input SNR for low and high reverberation
levels.

as a function of the noise level and the reverberation time.
Figure 9 illustrates the counting accuracy, defined as the
percentage of cases in which the correct number of speakers
was recovered by the algorithm, as a function of the input
SNR. Each point in the graph represents the average accuracy
obtained for 800 examples, which consists of 200 examples for
each number of speakers in J ∈ {1, 2, 3, 4}. We observe that
in low reverberation conditions the counting accuracy is high
for all SNR levels. The performance of the proposed counting
method decreases in high noise and reverberation conditions.

VIII. CONCLUSIONS

A novel separation algorithm is presented based on sim-
plex representations. First, a global simplex representation is
constructed based on a broad frequency range, and is used
for estimating the global probability of activity of each of the
speakers in each time frame. Second, we derive a local simplex
representation of each frequency individually. Combining the
global probabilities with the local relations in each frequency, a
spectral mask is estimated. The separation is performed using
the estimated spectral mask, using a two-stage approach of
multichannel beamforming followed by single-channel post-
filtering. The proposed GLOSS algorithm is shown to achieve
high separation scores in various conditions, outperforming
state-of-the-art methods.

APPENDIX A

Based on the statistical assumptions presented in Sec-
tion III-A, the expected bin-wise correlation of two different
frames l 6= n, 1 ≤ l, n ≤ L at the same frequency and mi-
crophone (same entry k), given the identity of the dominating
component, is:

E {r(l, k)r(n, k)|M(l, k),M(n, k)}

=

{
1 M(l, k) = M(n, k) 6= J + 1
0 otherwise . (41)

Namely, the correlation is one if the same speaker is active
in both TF bins, and zero if there are different dominating
speakers or that one of the TF bins is dominated by noise.

Thus, following the law of total expectation, we have that the
expected value of the bin-wise correlation is given by:

E {r(l, k)r(n, k)}
= EM(l,k),M(n,k)

{
E {r(l, k)r(n, k)|M(l, k),M(n, k)}

}
(42)

=

J+1∑
j=1

J+1∑
i=1

(
E {r(l, k)r(n, k)|M(l, k) = j,M(n, k) = i}

· Pr
(
M(l, k) = j

)
· Pr
(
M(n, k) = i

))
.

Since E {r(l, k)r(n, k)|M(l, k) = j,M(n, k) = i} = 0 for
i = J + 1 or j = J + 1, we have:

E {r(l, k)r(n, k)}

=

J∑
j=1

J∑
i=1

(
E {r(l, k)r(n, k)|M(l, k) = j,M(n, k) = i}

(43)

· Pr
(
M(l, k) = j

)
· Pr
(
M(n, k) = i

))
=

J∑
j=1

J∑
i=1

δijpj(l)pi(n)

=

J∑
j=1

pj(l)pj(n)

where δij = 1 for i = j and 0 otherwise. Based on the strong
law of the large numbers, we have:

1

D
rT (l)r(n) =

1

D

D∑
k=1

r(l, k)r(n, k)

a.s.→ E {r(l, k)r(n, k)} =

J∑
j=1

pj(l)pj(n). (44)

Similarly, for the same frame l = n:

E {r(l, k)r(l, k)|M(l, k)} =

{
1 M(l, k) 6= J + 1
0 otherwise (45)

Therefore, in this case we have

E {r(l, k)} = EM(l,k)

{
E {r(l, k)r(l, k)|M(l, k)}

}
=

J+1∑
j=1

E
{
r2(l, k)|M(l, k) = j

}
Pr
(
M(l, k) = j

)
(46)

=

J∑
j=1

E
{
r2(l, k)|M(l, k) = j

}
Pr
(
M(l, k) = j

)
=

J∑
j=1

pj(l)

implying that

1

D
rT (l)r(l)

a.s.→
J∑
j=1

pj(l). (47)
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