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Source Counting and Separation Based on
Simplex Analysis
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and Sharon Gannot , Senior Member, IEEE

Abstract—Blind source separation is addressed, using a novel
data-driven approach, based on a well-established probabilistic
model. The proposed method is specifically designed for separation
of multichannel audio mixtures. The algorithm relies on spectral
decomposition of the correlation matrix between different time
frames. The probabilistic model implies that the column space of
the correlation matrix is spanned by the probabilities of the various
speakers across time. The number of speakers is recovered by the
eigenvalue decay, and the eigenvectors form a simplex of the speak-
ers’ probabilities. Time frames dominated by each of the speakers
are identified exploiting convex geometry tools on the recovered
simplex. The mixing acoustic channels are estimated utilizing the
identified sets of frames, and a linear umixing is performed to ex-
tract the individual speakers. The derived simplexes are visually
demonstrated for mixtures of two, three, and four speakers. We
also conduct a comprehensive experimental study, showing high
separation capabilities in various reverberation conditions.

Index Terms—Blind audio source separation (BASS), relative
transfer function (RTF), spectral decomposition, simplex.

I. INTRODUCTION

B LIND source separation (BSS) is a core problem in signal
processing with numerous applications in various fields,

such as: biomedical data processing, audio processing, digital
communication, and image processing [1]. In Blind source sep-
aration (BSS) problems, only the output observations are given,
whereas neither the original sources nor the mixing systems are
known. Separation methods usually rely on some a priori hy-
pothesis regarding the characteristics of the original sources or
the obtained mixtures. Assuming that the sources are indepen-
dent and have non-Gaussian distributions leads to independent
component analysis (ICA) methods based on probabilistic or
information theoretic criteria [2]–[4]. Non-negative matrix fac-
torization (NMF) methods can be employed for signals which
admit factorization to non-negative components [5]. Sparsity of
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the signals is also often assumed, allowing a representation as a
linear combination of few elementary signals [6].

In audio applications, the measured signals in an array of
microphones represent convolutive mixtures of the source sig-
nals [7]–[9]. The measured signals are obtained by filtering the
clean source signals with the corresponding acoustic channels
relating the sources and the microphones. The acoustic chan-
nels, in a typical reverberant environment, consist of various
reflections from the objects and surfaces defining the acoustic
enclosure. The measured signals are commonly analysed in the
short time Fourier transform (STFT) domain, where the convo-
lutive mixtures are transformed into multiplicative mixtures at
each frequency bin.

ICA-based methods can be applied, subject to scale-
ambiguity and source permutation problems [10], [11]. Alter-
natively, numerous separation methods rely on the sparsity of
speech sources in the STFT domain, assuming that each time-
frequency (TF) bin is occupied by a single source [12]. In al-
gorithms based on NMF, the speech spectrum is decomposed
to a multiplication of non-negative basis and activation func-
tions [13], [14]. Due to joint estimation of source parameters
and mixing coefficients, these methods are free from permuta-
tion alignment problems. Other full-band approaches cluster the
measurements according to time difference of arrival (TDOA)
estimates or phase difference levels with respect to several mi-
crophones [15]–[17]. However, these models cannot be suc-
cessfully applied in the presence of high reverberation, when
the TDOA estimates are of poor quality. Robustness to room re-
verberations can be attained by performing bin-wise clustering,
in the cost of adding a second stage of permutation alignment
procedure [18]–[20]. The TIFROM algorithm [21] avoids the
TF sparsity assumption. It inspects the variations of computed
instantaneous ratios, and detects small regions in the TF plane
with a single active speaker.

Source separation can also be achieved by applying beam-
formers [22], which are multichannel spatial filters designed by
certain criteria, such as the linearly constrained minimum vari-
ance (LCMV) beamformer [23]. These algorithms are not com-
pletely blind, as their design requires some knowledge on the
signal statistics or on the associated acoustic channels. In [23]
the acoustic channels were estimated assuming the availability
of known time intervals with interferences only and known time
intervals comprising each of the desired speakers separately.

In this paper, we present a novel source separation algo-
rithm, which is specifically applicable to speech mixtures. The
key point lies in the spectral decomposition of the correlation
matrix between different observations. The justification of the
method is based on a probabilistic model, in which each obser-
vation consists of different portions of the hidden sources. The
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relative portion of each source is randomly generated according
to the sources’ probabilities, which vary from one observation
to another. Based on this model, we show that the column space
of the correlation matrix is spanned by the probabilities of the
different sources. Accordingly, the rank of the correlation ma-
trix equals the number of sources, and its eigenvectors form a
simplex of the sources’ activity probabilities. The vertices of
the simplex correspond to observations dominated by a single
source with high probability, facilitating the estimation of the
hidden sources.

The applicability of the presented model for blind separation
of speech mixtures relies on two main attributes of multichan-
nel audio mixtures. The first is the sparsity of the speech in
the STFT domain, implying that different time-frames contain
different portions of speech components of the different speak-
ers. The second is the fact that in a multichannel framework
each speaker is associated with a unique spatial signature, man-
ifested in the associated acoustic channel. Applying the above
procedure and exploiting convex geometry tools, we can iden-
tify frames dominated by a single speaker, enabling estimation
of the corresponding acoustic channels. Given the estimated
acoustic channels, the individual speakers are extracted using
the pseudo-inverse of the acoustic mixing system. It is impor-
tant to note that our model relies on the sparsity assumption for
the acoustic channel estimation, yet, the separation is based on
standard unmixing rather than masking techniques, thus avoid-
ing artifacts often attributed to masking-based approaches.

A. Related Work

Our method recovers a simplex of the probability of activity
of the different sources. Convex geometry tools are more com-
monly utilized for hyperspectral unmixing (HU) in the emerging
field of hyperspectral remote sensing [24], [25]. In those studies,
the goal is to identify materials in a scene, using hyperspectral
images with high spectral resolution. The work relies on a lin-
ear mixing model, where each pixel is modelled as a linear sum
of the radiated energy curves of the materials contained in this
pixel. The nature of the problem entails a positivity constraint on
the weights of the different materials. In addition, the weights
must sum to one due to energy conservation. The latter con-
straint violates the statistical independence assumption, making
the application of many standard BSS algorithms inappropriate.
Alternatively, the above constraints lay the ground for the ap-
plication of convex geometry tools for HU. There was also an
attempt to borrow these principles for quasi-stationary sources
separation such as speech [26], [27]. In general, it is clear that
speech mixtures are not formed as convex mixtures. In [26],
a certain normalization followed by a pre-processing proce-
dure for cross-correlation mitigation, were proposed in order
to enforce bin-wise convexity. In [27], the output of a phase-
normalized steered response beamformer was used as a feature.

It is important to emphasize that the mixture model presented
in this paper is fundamentally different from the one used for
HU. In our model, we recover a simplex of the probability
of activity of the different sources, while in HU the simplex
is formed in the original (often high-dimensional) domain of
the mixing systems. In addition, our method also inherently
identifies the number of sources in the mixture, whereas HU
methods generally assume that the number of sources is known.
Moreover, in contrast to [26], we present a full-band approach
based on averaging over a large number of frequency bins, which
enhances robustness and avoids permutation problems.

It should be noted that convex hulls and simplex shapes arise
also in other contexts, whenever dealing with objects whose
weights sum to one, such as histograms. Probabilistic latent
component analysis (PLCA), which is a probabilistic exten-
sion of NMF, is employed for source separation by modeling
the mixture with independent distributions that lie in a sim-
plex. This framework was combined with sparsity constraints
in [28] for learning the latent variables of histogram data. The
method learns an overcomplete set of bases, which form a con-
vex hull surrounding the data distributions. Another extension of
PCLA was presented in [29] to deal with separation of sources
that have some common basis vectors. In [30] a new nearest-
subspace representation for sound mixtures was derived. The
authors formulated the search as a sparse coding problem with
l2 regularization, leading to a solution that lies on a vertex of
the weight simplex. In contrast to these models, the proposed
method recovers a simplex of the probability of activity of the
speakers across time.

B. Contributions

The proposed method has several advantages over most of the
above-mentioned separation algorithms. First, most separation
schemes assume that the number of speakers is known, while
other methods focus solely on the task of speaker counting. The
proposed method carries out a combined speaker counting and
separation task. In addition, this method has a low computational
cost since it does not contain iterations, as opposed to iterative
methods such as EM-based approaches. It is also more efficient
than bin-wise clustering methods, since it is based on a full-band
approach, which does not require a permutation alignment stage.
The method is also free of any initialization procedures, which
are often required by separation algorithms, such as NMF-based
methods. In terms of performance, we show in the experimental
part that the proposed method obtains high separation scores
in various reverberation levels, and has an advantage over an
NMF-based method [14] and a DNN-based concurrent speaker
detector [31]. The proposed method is also shown to be much
more computationally efficient with respect to an independent
vector analysis (IVA) algorithm [32].

The paper is organized as follows. The probabilistic model
and its analysis by convex geometry principles are presented
in Section II. The model is applied to speech mixtures and
an algorithm for speaker counting and separation is derived
in Section III. Section IV contains an extensive experimental
study demonstrating the performance of the proposed method in
comparison to several competing methods. Section V concludes
this paper.

II. STATISTICAL MIXTURE MODEL AND ANALYSIS

We present a general statistical model describing the genera-
tion of a collection of observations as mixtures of a set of hidden
sources. The observations consist of different portions of each of
the sources, where each source occurs with a certain probability.
The separation is based on the computation of the correlation
matrix defined over the given observations. Based on the spec-
tral decomposition of the correlation matrix, we can identify the
number of hidden sources and derive a simplex representation,
which relates each observation with its corresponding probabil-
ities. In Section III, we discuss the relation between this general
model and the problem of blind separation of speech mixtures.
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Fig. 1. An illustration of the presented statistical mixture model. In this example there are J = 3 hidden sources {hj }3
j=1 consisting of D = 10 coordinates,

characterized by varying shades of red, blue and green, respectively. The hidden sources are used to construct L = 6 observations {a(l)}6
l=1 , where each coordinate

is taken from a different source. For the first observation a(1) dashed lines are drown between each coordinate and the associated coordinate of the source from
which it was taken. The set of probabilities [p1 (l), p2 (l), p3 (l)] used to construct each observation is written above it. Note that in this example for each observation
the number of coordinates taken from each source exactly matches the corresponding probability, while in practice it is only approximately satisfied. Note also
that three observations out of the six are highly dominated by a specific source (occupies at least 70% of the observation coordinates). The second observation
a(2) is dominated by the second source h2 . The fourth observation a(4) is dominated by the first source h1 . The fifth observation a(5) is dominated by the third
source h3 .

We use the analogy between the two to derive an algorithm for
estimating the number of active speakers and separating them.

A. Mixture Generation

Consider J unknown hidden sources {hj}J
j=1 . The hidden

sources are i.i.d. random vectors consisting of D coordinates,
i.e., hj ∈ RD, where the kth coordinate of the jth source is
denoted by hj (k). The hidden sources follow a multivariate
distribution with zero-mean and identity covariance matrix, i.e.:

E
{
hjhT

j

}
= ΥD (1)

where ΥD is the identity matrix of size D × D. The diagonal
covariance matrix implies that the coordinates of the hidden
sources are assumed to be uncorrelated. It should be noted that
the unit variance assumption is used here for the sake of sim-
plicity, and that the following derivation also holds for non-unit
and non-constant variance by applying a proper normalization.

Suppose we are given a set of L � J observations {a(l)}L
l=1 ,

also in RD. Each observation a(l) is formed by the J hidden
sources. Each coordinate in a(l) equals the corresponding en-
try of hj with probability pj (l), where the probabilities of all
sources sum to one

∑J
j=1 pj (l) = 1. Accordingly, the kth coor-

dinate of the lth observation can be written as:

a(l, k) =
J∑

j=1

Ij (l, k)hj (k) (2)

where Ij (l, k) ∼ Br(pj (l)) is an indicator function following a
Bernoulli distribution with parameter pj (l), i.e. Ij (l, k) equals
1 if the jth source occupies the kth coordinate of a(l) and 0

otherwise. The indicator functions satisfy:

J∑

j=1

Ij (l, k) = 1

Ij (l, k)Ii(l, k) = Ij (l, k)δij (3)

where δij = 1 for i = j and δij = 0 otherwise. We further as-
sume that the indicator functions of different coordinates and of
different frames are mutually independent.

According to this statistical model, for each l, the probability
pj (l) corresponds to the relative portion of the jth source in
the construction of the observation a(l). An illustration of the
presented mixture model is depicted in Fig. 1 for J = 3 sources,
D = 10 coordinates and L = 6 observations. Consider for ex-
ample the first observation a(1), with associated probabilities:
p1(1) = 0.5, p2(1) = 0.3 and p3(1) = 0.2. In the vector a(1),
5 coordinates are taken from h1 , 3 coordinates are taken from
h2 , and 2 coordinates are taken from h3 . In practice, the rel-
ative portion of each source only approximately matches the
corresponding probability for D large enough.

The motivation for this model comes from separation of
speech mixtures. According to the sparsity assumption of speech
sources in the STFT domain [12], each TF bin is dominated by
a single speaker. Given the spectrogram of the mixed signal,
we can define a column vector for each frame index, consisting
of the STFT values in a certain frequency band. Relying on the
sparsity assumption, each frequency bin in this vector contains a
signal from a single speaker. The challenge in speech mixtures,
is that they are time-varying. In Section II-A we mitigate this
problem by proposing features based on the acoustic channels,
which are approximately fixed as long as the environment and
the source positions do not change dramatically. Specifically,
we use features based on the relative transfer function (RTFs),
which are defined as the ratio between the transfer functions of
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TABLE I
ANALOGY BETWEEN GENERAL MODEL AND SPEECH MIXTURES

each of the microphones and the reference microphone. Accord-
ingly, for speech mixtures, the hidden vectors correspond to the
RTF vectors, and their dimension D is proportional to the length
of the chosen frequency band multiplied by the number of mi-
crophones (excluding the reference microphone). The analogy
between the general model of Section II-A and the model of
speech mixtures of Section III is summarized in Table I.

B. Analysis of the Correlation Matrix

Our goal is to recover the number J of hidden sources
{hj}J

j=1 and to estimate them based on the given set of ob-

servations {a(l)}L
l=1 . The key to our separation scheme lies in

the spectral decomposition of the correlation matrix defined over
the different observations, which is analysed in this section.

Based on the assumed statistical model (1, 2, 3), the correla-
tion between each two observations a(l) and a(n), 1 ≤ l, n ≤ L
is given by (for details refer to Appendix A):

E

{
1
D

aT (l)a(n)
}

=
{∑J

j=1 pj (l)pj (n) if l �= n
1 if l = n

. (4)

Let W be the L × L correlation matrix, with Wln =E{1
D aT

(l)a(n)}. According to (4) the correlation matrix can be
recast as:

W = PPT + ΔW (5)

where P is a L × J matrix with Plj = pj (l), and ΔW is a
diagonal matrix with ΔWll = 1 − ∑J

j=1 p2
j (l). We show in

Appendix B, that ΔW has a negligible effect on the spec-
tral decomposition of W. Therefore, henceforth we omit ΔW
from our derivations and consider the correlation matrix as
W ≈ PPT .

Following the mutual independence assumption of the
sources, the columns of P are linearly independent, i.e., the
rank of P equals the number of sources J . Hence, the rank
of W also equals J , i.e., it has J nonzero eigenvalues. We ap-
ply an eigenvalue decomposition (EVD) W = UDUT , with U
an orthonormal matrix consisting of the eigenvectors {uj}L

j=1 ,
and D a diagonal matrix with the eigenvalues {λj}L

j=1 on its
diagonal. The eigenvalues {λj}L

j=1 are sorted by their values in
a descending order. According to (5), the first J eigenvectors
{uj}J

j=1 , associated with the J nonzero eigenvalues {λj}J
j=1 ,

form a basis for the column space of the matrix P. Accordingly,
the following identity holds:

UJ = PQT (6)

where UJ = [u1 , . . . ,uJ ], and Q is a J × J invertible matrix.

Each observation can be represented as a point in RJ , defined
by the corresponding set of probabilities: p(l) = [p1(l), p2(l),
. . . , pJ (l)]T. Note that each point p(l) is a convex combination
of the standard unit vectors:

p(l) =
J∑

j=1

pj (l)ej ,

J∑

j=1

pj (l) = 1 (7)

whereej = [0, . . . , 1, . . . , 0]T with one in the jth coordinate and
zeros elsewhere. Accordingly, the collection of probability sets
{p(l)}L

l=1 lies in a (J − 1)-simplex in RJ . This is a standard
simplex, whose vertices are the standard unit vectors {ej}J

j=1 .
Note that in this representation, points for which the probability
of the jth source is dominant over the probabilities of the other
sources, i.e., pj (l) � pi(l), ∀i �= j, 1 ≤ i ≤ J , satisfy: p(l) ≈
ej , namely these points are concentrated nearby the jth vertex.

We can use the eigenvectors of W to form an equivalent repre-
sentation in RJ , defined by: ν(l) = [u1(l), u2(l), . . . , uJ (l)]T .
According to (6), this representation is related to the former
representation by the following transformation:

ν(l) = Qp(l). (8)

Hence, the set {ν(l)}L
l=1 occupies a simplex, which is a rotated

and scaled version of the standard simplex defined by the stan-
dard unit vectors. The new simplex is the convex hull of the
following J vertices:

e∗j = Qej = Qj (9)

where Qj is the jth column of the matrix Q.
Regarding the computation of the matrix W, we do not have

access to the expected values 1
D E{aT (l)a(n)}, ∀1 ≤ l, n ≤ L,

hence we use instead the typical values Ŵln = 1
D aT (l)a(n). In

Appendix A, we show that the variance of 1
D E{aT (l)a(n)} is

proportional to 1/D, hence approaches zero for D large enough,
implying that the typical value is close to the expected value.

We demonstrate the above derivation using three examples
with J = 2, J = 3 and J = 4 sources. We generate J indepen-
dent sources of dimension D = 1000 with hj (k) ∼ N (0, 1)
Next, we generate L = 500 observations, {a(l)}L

l=1 accord-
ing to (2). To generate the probabilities {pj (l)}J

j=1 for each
l, we draw J − 1 uniform variables between [0, 1] and sort
them in an ascending order: ρ1(l) < ρ2(l) < · · · < ρJ−1(l).
Accordingly, for each l, we define the probability of each
source by: p1(l) = ρ1(l), pj (l) = ρj (l) − ρj−1(l), ∀2 ≤ j ≤
J − 1 and pJ (l) = 1 − ρJ−1(l). Next, we construct the matrix
Ŵ with Ŵln = 1

D aT (l)a(n), and apply an EVD.
Fig. 2(a)–(c) depicts {p(l)}L

l=1 , for J = 2 (a), J = 3 (b) and
J = 4 (c). To enable visualization also for J = 4 we omit the
first coordinate of p(l), and represent the simplexes in RJ−1 .
The colouring of the points is as follows: blue, green, red and
cyan for observations dominated by the first, the second, the
third, and the fourth source, respectively (for J = 3 only blue,
green and red, and for J = 2 only blue and green). Orange points
depict frames with mixture of sources. We observe that in each
plot the points form a (J − 1)-simplex, i.e., a line segment (a),
a triangle (b) and a tetrahedron (c).

Fig. 2(d)–(f) depicts {ν(l)}L
l=1 , for J = 2 (d), J = 3 (e)

and J = 4 (f). The coloring of the points is the same as in
Fig. 2(a)–(c). We observe that the scattering of the points in
(d)–(f) represents a linear transformation of the scattering
in (a)–(c), as implied by (8).
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Fig. 2. (a)–(c) Scatter plots of oracle probabilities {p(l)}L
l=1 representing the expected relative portion of each source in the construction of each observation.

(d)–(f) Scatter plots of the mappings {ν(l)}L
l=1 obtained from the eigenvectors of the estimated correlation matrix Ŵ between different observations. Scatter

plots correspond to mixtures of J = 2 (a) (d), J = 3 (b) (e) and J = 4 (c) (f) sources. Red, blue, green and cyan points stand for observations dominated by a
single source, whereas orange points stand for observations with multiple sources. A line shape is obtained for J = 2 (a), a triangle shape is obtained for J = 3
(b) and a tetrahedron shape is obtained for J = 4 (c). Rotated and scaled versions of theses shapes are formed in the scatter plots (d)–(f) of the mappings {ν(l)}L

l=1 ,
as implied by (8).

Fig. 3. The values of the first 5 eigenvalues {λj }5
j=1 of the estimated cor-

relation matrix Ŵ between different observations, obtained for mixtures with
J = {2, 3, 4} sources.

Fig. 3 depicts the computed eigenvalues of the estimated
correlation matrix Ŵ, sorted in a descending order. We observe
that the number eigenvalues with significant value above zero,
exactly matches the number of sources J .

We conclude with the practical aspects of the new repre-
sentation derived by the EVD of the matrix W. By examin-
ing the rank of the obtained decomposition, we can estimate
the number of sources involved in the construction of the set
{a(l)}L

l=1 . Furthermore, the eigenvectors {uj}J
j=1 form a sim-

plex that corresponds to the probability of activity of each source
along the observation index 1 ≤ l ≤ L. We can use this repre-

sentation to identify observations, which are highly dominated
by a certain source, i.e., with pj (l) � pi(l),∀i �= j, implying
a(l) ≈ hj . The identified observations can be used for estimat-
ing the original J hidden sources {hj}J

j=1 .

III. SPEAKER COUNTING AND SEPARATION

In this section, we devise a statistical model for speech mix-
tures, which resembles the model presented in Section II-A.
Next, we use the analysis of Section II-B to derive an algorithm
for speaker counting and separation.

A. Speech Mixtures

Consider J concurrent speakers, located in a reverberant en-
closure. The signals are measured by an array of M micro-
phones. The measured signals are analysed in the STFT domain
with a window of length N samples and overlap of η samples:

Y m (l, f) =
J∑

j=1

Y m
j (l, f) =

J∑

j=1

Am
j (f)Sj (l, f) (10)

where Am
j (f) is the acoustic transfer function (ATF) relating

the jth speaker and the mth microphone, and Sj (l, f) is the
signal of the jth speaker. Here f ∈ {1, . . . , K} is the frequency
bin and l ∈ {1, . . . , L} is the frame index.
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The first microphone (m = 1) is considered as the reference
microphone. We define the relative transfer function (RTF) [33],
[34] as the ratio between the ATF of the mth microphone and the
ATF of the reference microphone, both of which are associated
with the jth speaker:

Hm
j (f) =

Am
j (f)

A1
j (f)

. (11)

In order to transform the measurements (10) into features that
correspond to the model presented in Section II-A, we rely on
two main assumptions. The first assumption regards the fact that
each speaker has a unique spatial signature, which is manifested
in the associated RTF (11). The second assumption regards the
sparsity of speech signals in the STFT domain.

For speech mixtures, the J hidden sources are defined by the
RTFs of each of the speakers. Each hidden source hj consists of
D = 2 · (M − 1) · F coordinates for the real and the imaginary
parts of the RTF values, in F ≤ K frequency bins and in M − 1
microphones:

hm
j =

[
Hm

j (f1),Hm
j (f2), . . . , Hm

j (fF )
]T

hc
j =

[
h2T

j ,h3T

j , . . . ,hM T

j

]T

hj =
[
real

{
hc

j

}T
, imag

{
hc

j

}T
]T

. (12)

Note that h1
j is an all-ones vector for all 1 ≤ l ≤ L, hence is

excluded from hj in (12). We assume that the RTF vectors
have a diagonal covariance matrix (1). The attributes of the
Fourier transform prescribe that the real and the imaginary parts
of the RTF values, as well as the different frequency bins, are
uncorrelated. For F large enough, the model can tolerate slight
correlations between adjacent frequency bins, or between neigh-
bouring microphones. In addition, we assume that the RTFs of
the different speakers are mutually independent.

After defining the J hidden vectors associated with each of
the speakers, we have to extract related observations from the
measured signals (10). We assume that low-energy frames do
not contain speech components, and hence these frames are
excluded from our analysis. We use the assumption of the speech
sparsity in the TF domain [12], which is widely employed in
the STFT analysis of speech mixtures, and is often applied for
localization [17], [35], [36] and separation tasks [14], [19], [37].
According to [12], each TF bin is exclusively dominated by a
single speaker. Let Ij (l, f) denote an indicator function with
expected value pj (l), which equals 1 if the jth speaker is active
in the (l, f)th bin, and equals 0, otherwise. The assumption
that the probability pj (l) is dependent on l but independent of
f , reflects that the frequency components of a speech signal
tend to be activated synchronously [19], [38]. According to the
TF sparsity assumption, the following holds for each TF bin
(recall (3)):

J∑

j=1

Ij (l, f) = 1

Ij (l, f)Ii(l, f) = Ij (l, f)δij . (13)

Hence, (10) can be recast as:

Y m (l, f) =
J∑

j=1

Ij (l, f)Am
j (f)Sj (l, f). (14)

We compute the following instantaneous ratio between the mth
microphone and the reference microphone:

Rm (l, k) =
Y m (l, f)
Y 1(l, f)

=

∑J
j=1 Ij (l, f)Am

j (f)Sj (l, f)
∑J

j=1 Ij (l, f)A1
j (f)Sj (l, f)

. (15)

According to (11), (13) and (15), we get (recall (2)):

Rm (l, f) =
J∑

j=1

Ij (l, f)Hm
j (f) (16)

implying that the ratio in the (l, f)th TF bin equals the RTF of
one of the speakers. To obtain robustness, we replace the ratio
in (16) by power spectra estimates averaged over T + 1 frames
around l [33]:

R̃m (l, f) ≡ Φ̂ym y 1 (l, f)

Φ̂y 1 y 1 (l, f)
≡

∑l+T /2
n= l−T /2 Y m (n, f)Y 1∗(n, f)

∑l+T /2
n= l−T /2 Y 1(n, f)Y 1∗(n, f)

.

(17)
Let a(l) denote the observed RTF of frame l, which consists

of the real and imaginary parts of the RTF values, in F frequency
bins and in M − 1 microphones (recall (12)):

am (l) =
[
R̃m (l, f1), R̃m (l, f2), . . . , R̃m (l, fF )

]T

ac(l) =
[
a2T

(l),a3T

(l), . . . ,aM T

(l)
]T

a(l) =
[
real {ac(l)}T , imag {ac(l)}T

]T

. (18)

Note that for a certain frequency bin, the same speaker (both the
real and the imaginary parts) is captured by all the microphones.
However, this does not affect the relative portions of the different
speakers in a(l), and has a negligible effect on the variance
of the correlation (34) provided F � M . There is a trade-off
choosing the frequency band {f1 , . . . , fF }. On the one hand, we
should focus on the frequency band in which most of the speech
components are concentrated in order to avoid TF bins with
low-energy speech components. On the other hand, a sufficient
broad frequency band should be used in order to reduce the
effect of TF bins occupied by several speakers, and to obtain a
better averaging with smaller variance (34).

We compute (17) and (18) for each 1 ≤ l ≤ L, and form
the set {a(l)}L

l=1 . We conclude that the obtained set is con-
structed from the RTF vectors of the different sources (12),
and has similar properties to the set of observations defined in
Section II-A. A nomenclature listing the different symbols and
their meanings is given in Table II.

B. Forming a Data-Driven Simplex

After we have shown that the speech separation problem can
be formulated using the model in Section II-A, we would like
to use the analysis of Section II-B to derive an algorithm for
speaker counting and separation.

Following the derivation of Section II-B, we construct an
L × L matrix Ŵ with Ŵln = 1

D aT (l)a(n), and apply EVD.
Based on the computed eigenvectors, we form a representation
in RJ , defined by: ν(l) = [u1(l), u2(l), . . . , uJ (l)]T .

We provide a similar demonstration for speech mixtures as
we have presented in the syntactic case in Section II-B. We
present three examples with J = 2, J = 3 and J = 4 speakers.
The generation of the mixtures and the associated parameters
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Fig. 4. Scatter plots of the mappings {ν(l)}L
l=1 obtained from the eigenvectors of the estimated correlation matrix Ŵ between different time frames. Scatter

plots correspond to mixtures of J = 2 (a), J = 3 (b) and J = 4 (c) speakers. Red, blue, green and cyan points stand for frames dominated by a single speaker,
whereas orange points stand for frames with multiple active speakers. A line shape is obtained for J = 2 (a), a triangle shape is obtained for J = 3 (b) and a
tetrahedron shape is obtained for J = 4 (c). There is a good correspondence between the mappings obtained for speech mixtures and the mappings obtained in the
synthetic example, presented in Fig. 2.

Fig. 5. The values of the first 5 eigenvalues {λj }5
j=1 of the estimated cor-

relation matrix Ŵ between different time frames, obtained for mixtures with
J = {2, 3, 4} speakers.

TABLE II
NOMENCLATURE

are described in details in the experimental part, in Section IV.
Fig. 4 depicts the points {ν(l)}L

l=1 , for J = 2 (a), J = 3 (b) and
J = 4 (c). Here to, we omit one coordinate of ν(l) to enable
visualization also for J = 4. The plots in Fig. 4 are generated
in a similar way to the plots in Fig. 2. We observe a good
correspondence between Fig. 4 and Fig. 2, which gives evidence
to the applicability of the general model of Section II to the case
of speech mixtures.

Fig. 5 depicts the computed eigenvalues sorted in a descend-
ing order, and normalized by the value of the maximum eigen-
value. As in Fig. 3, the number of eigenvalues with significant

value above zero matches the number of sources J . Hence, we
can estimate the number of sources in the mixture by:

Ĵ =

(

argmin
j

λj

λ1
< α

)

− 1 (19)

where α is a threshold parameter.

C. Recovering the Activity of Speakers

We use the obtained representation {ν(l)}L
l=1 to recover the

probabilities of the speakers. Next, we detect frames, which are
dominated by one of the speakers, and utilize them for esti-
mating the corresponding RTFs. As discussed in Section II-B,
the vertices of the simplex defined by {ν(l)}L

l=1 correspond to
single-speaker points. We recover the simplex vertices, and then
utilize them to transform the obtained representation {ν(l)}L

l=1
to the original probabilities {p(l)}L

l=1 .
We assume that for each speaker there is at least one frame,

with index lj , which contains only this speaker, i.e., p(lj ) =
ej . The single-speaker frames are the simplex vertices, i.e.,
ν(lj ) = e∗j . Note that single-speaker frames are tantamount to
pure pixels in HU. Several algorithms for identifying the vertices
of a simplex were developed in the context of HU [39]–[41].
We use a simple approach based on the family of successive
projection algorithms [42]. We first identify two vertices of the
simplex, and then successively identify the remaining vertices
by maximizing the projection onto the orthogonal complement
of the space spanned by the previously identified vertices. We
start with the first vertex, which is chosen as the point with the
maximum norm:

ê∗1 = ν(l1), l1 = argmax
1≤l≤L

‖ν(l)‖2 . (20)

Then, the second vertex is chosen as the point with maximum
distance with respect to the first identified vertex:

ê∗2 = ν(l2), l2 = argmax
1≤l≤L

‖ν(l) − ê∗1‖2 . (21)

Next, we identify the remaining vertices of the simplex. Let
ν̄(l) = ν(l) − ê∗1 and ˆ̄e∗j = ê∗j − ê∗1 . Suppose we have already
identified r − 1 vertices {ê∗j}r−1

j=1 with r > 1. We define the
matrix Er−1 = [ˆ̄e∗2 , . . . , ˆ̄e

∗
r−1 ], from which we construct its
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Fig. 6. A flow diagram of the proposed method. The method is illustrated on a 20 s long mixture of J = 3 concurrent speakers measured by an array of M = 8
microphones (only two microphones are presented). 1) We use the STFT representation of the measured signals in two microphones with F = 2048 frequency bins
and L = 622 frames. We focus on non-empty frames with non-negligible energy (depicted by magenta rectangles). For each non-empty frame, we compute the
instantaneous ratio between the measurements of the second microphone and the measurements of the first microphone, which serves as a reference microphone.
2) An observation of length D = 1152 is associated with each frame, which comprises the real and the imaginary parts of the computed ratios corresponding
to the frequency bins 1 − 576 (0−4.5 kHz). 3) The correlation matrix W between observations is approximated by the inner product between the observations
of the different frames. 4) An eigenvalue decomposition is applied to the correlation matrix, resulting in a low-rank representation with 3 significant eigenvalues
associated with 3 eigenvectors, which span the column space of the probability matrix P. 5) The computed eigenvectors form a 3-D mapping for each frame. In the
subfigure of Step 5, each orange point represents a specific frame, and is embedded in the new 3 dimensional coordinate system according to the corresponding
entries of the 3 eigenvectors. It is evident that the points lie on a 2-D simplex (triangle). The vertices of the simplex (marked by red, blue and green dots) are
detected, corresponding to 3 frames, where each frame is dominated by a single speaker. 6) The mapping is transformed to estimated probability of activity of
the different speakers. Here, all points lie on the standard probability simplex. 7) Points lying near each vertex are associated with frames dominated by a single
speaker (colored by red, blue and green). The algorithm detection is compared to the oracle mask.

orthogonal complement projector P⊥
r−1 ≡IJ − Er−1(ET

r−1
Er−1)+ET

r−1 , where + denotes the matrix pseudoinverse. The
rth vertex is chosen as the point with maximum projection to
the column space of P⊥

r−1 :

ê∗r = ν(lr ), lr = argmax
1≤l≤L

‖P⊥
r−1 ν̄(l)‖2 . (22)

We successively repeat (22) for 3 ≤ r ≤ J , and recover all the
simplex vertices {ê∗j}J

j=1 . For simplicity of notation, we ignore
possible permutation of the indices of the vertices with respect
to the actual identity of the speakers.

Based on (9), an approximation of the matrix Q is formed by
the identified vertices: Q̂ = [ê∗1 , ê

∗
2 , . . . , ê

∗
J ]. Using the recov-

ered matrix Q̂ we can map the new representation to the original
probabilities by (recall (8)):

p̂(l) = Q̂−1ν(l). (23)

Let Lj denote the set of frames dominated by the jth speaker.
Based on the recovered probabilities, we define the set Lj by:

Lj = {l | p̂j (l) > β, l ∈ {1, . . . , L}} (24)

where β is a probability threshold.

D. Unmixing Procedure

Given the set Lj , an RTF estimator for the jth speaker, is
given by:

Ĥm
j (f) =

∑
l∈Lj

Y m (l, f)Y 1∗(l, f)
∑

l∈Lj
Y 1(l, f)Y 1∗(l, f)

. (25)

Based on the estimated RTFs Ĥm
j (k) of each of the speakers

1 ≤ j ≤ J , the mixture can be unmixed applying the pseudo-
inverse of the matrix containing the estimated RTFs:

z(l, f) = BH (f)y(l, f) (26)

where

y(l, f) =
[
Y 1(l, f), Y 2(l, f), . . . , Y M (l, f)

]T

B(f) = C(f)(C(f)H C(f))−1 (27)

and [C(f)](m,j ) = Ĥm
j (f). The time-domain separated sig-

nals are obtained by applying the inverse-STFT. The proposed
method is summarized in Algorithm 1, and a flow diagram il-
lustrating its main steps is given in Fig. 6.
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Algorithm 1: Separation Algorithm.
Feature Extraction:

� Estimate instantaneous RTFs {R̃m (l, f)}l,f ,m (17).
� Construct observation vectors {a(l)}L

l=1 (18).
Forming a Data-Driven Simplex:

� Estimate the correlation matrix Ŵ with
Ŵln = 1

D aT (l)a(n).
� Compute EVD of Ŵ and obtain {uj , λj}L

j=1 .
� Estimate the number of speakers Ĵ (19).
� Construct ν(l) = [u1(l),u2(l), . . . ,uJ (l)].
� Form the set {ν(l)}L

l=1 lying in a simplex.
Recovering Activity of Speakers:

� Recover simplex vertices {ê∗j}J
j=1 (20), (21), (22).

� Estimate speakers’ probabilities {p(l)}L
l=1 (23).

� Identify single-speaker frames {Lj}J
j=1 (24).

Unmixing Procedure:
� Estimate the RTFs {Ĥm

j (f)}f ,j,m .
� Separate the individual speakers (26).

Note that the proposed method exploits the estimated speaker
probabilities to detect frames dominated by each of the speakers
and uses them to estimate the corresponding RTFs of each of the
speakers. Exploring other alternatives for utilizing the estimated
probabilities in order to provide better separation capabilities is
an important issue, which is beyond the scope of the current
contribution and is left for future work.

The method presented in this paper is utilized in [43] for a
diarization task, namely, to determine the set of active speak-
ers in each time segment. Exploiting the diarization results, a
separation of undetermined mixtures with M < J is demon-
strated in [43], where at each time instance the number of active
speakers does not exceed the number of microphones.

IV. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the proposed
method in various test scenarios of both simulated data and
real-life recordings.

A. Simulation Setup

The measured signals are generated using concatenated
TIMIT sentences. The clean signals are convoluted with acous-
tic impulse responses (AIRs), which are drawn from an open
database [44]. The AIRs in the database were measured in a
reverberant room of size 6 m × 6 m × 2.4 m with reverberation
times of 160 ms, 360 ms and 610 ms. We use a uniform linear
array of M = 8 microphones with 8 cm inter-microphone spac-
ing. The different speaker positions are located on a spatial grid
of angles ranging from −90◦ to 90◦ in 15◦ steps with 1m and
2m distance from the microphone array.

The signal duration is 20 s, with a sampling rate of 16 kHz.
The window length of the STFT is set to N = 2048 with
η = 75% overlap between adjacent frames, which corresponds
to a total amount of L = 622 frames. For each frame, the
instantaneous RTF of each frequency bin in (17), is estimated
by averaging the signals in 3 adjacent frames (T = 2). The
instantaneous RTF vectors in (18) consist of F = 576 frequency
bins, corresponding to 0−4.5 kHz, in which most of the speech

Fig. 7. Counting accuracy as a function of the threshold parameter α for
different reverberation times of 160 ms, 360 ms and 610 ms. Each point in
the graphs is obtained by an average over 300 trials with different speakers in
different locations: 100 mixtures of J = 2 speakers, 100 mixtures of J = 3
speakers and 100 mixtures of J = 4 speakers. The mean counting accuracy
averaged over all reverberation levels is also presented in a solid magenta line.

components are concentrated. The obtained concatenated
vectors of length D = 2 · (M − 1) · F = 8064 are normalized
to have a unit-norm. The results are demonstrated for mixtures
of J = 2, J = 3 and J = 4 speakers in different locations.

B. Speaker Counting

We first examine the ability of the proposed method to es-
timate the number of speakers in the mixture. Here, we use a
smaller frequency range between 0.5−1.5 kHz, which yields
better results for the task of counting the number of speakers.
We conduct 100 Monte-Carlo trials for each J ∈ {1, 2, 3}, in
which the angles and the distances of the speakers, as well as
their input sentences, are randomly selected. Fig. 7 depicts the
average counting accuracy as a function of the threshold pa-
rameter α (19) in the range between 0.09 and 0.15 for different
reverberation levels T60 = {160, 360, 610} ms. It can be seen
that the best results are achieved for moderate reverberation time
of 360 ms. For low reverberation time of 160 ms better results
are obtained for lower threshold values, while for high rever-
beration time of 610 ms better results are obtained for higher
threshold values. The mean counting accuracy averaged over all
reverberation levels is also presented in magenta solid line. It
can be deduced that the mean counting accuracy is robust to the
choice of the threshold value with above 90% accuracy in the
range between 0.1 and 0.14.

We also examine the counting accuracy with respect to the
relative positions of the speakers. For this purpose, mixtures of
J = 3 speakers are generated with one speaker in a fixed position,
while the other two speakers are located in different positions.
The first speaker is positioned 1m from the array at a relative
angle of −60◦. The two other speakers are positioned 2 m from
the array with different relative angles ranging from −90◦ to
90◦ in steps of 15◦. The reverberation time is set to 360 ms. For
each angle combination, the performance is averaged over 10
trials with different speakers and sentences. Fig. 8 illustrates
the counting accuracy obtained for each angle combination
of the two speakers for fixed threshold value α = 0.12. Note
that the values on the diagonal of the matrix are meaningless
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Fig. 8. Counting accuracy for a mixture of J = 3 speakers with one speaker
in a fixed position at a relative angle of −60◦, while the other two speakers are
located in various relative angles ranging from −90◦ to 90◦ in steps of 15◦. The
reverberation time is set to 360 ms. Each entry in the matrix corresponds to a
specific angle combination of the two speakers, and is colored according to the
obtained counting accuracy, averaged over 10 trials with different speakers.

since they represent a scenario with two speakers located at the
same spot. It can be seen that most of the counting errors occur
when all three speakers are very close to each other. Neverthe-
less, the correct number of speakers is recovered most of the
time with average accuracy of 97.8%, even when two speakers
are located one in front of the other (i.e., with the same relative
angle but in different distances).

C. Detection of Single-Speaker Frames

Next, we examine the ability of the proposed method to iden-
tify the set of frames {Lj}J

j=1 dominated by each speaker. Fig. 9
illustrates the time-domain signals of each of the speakers for
a mixture of J = 2 speakers (a), and for a mixture of J = 4
speakers (b). The shaded areas stand for time instances, which
were found to be dominated by each of the speakers, using (24).
It can be seen that the proposed algorithm successfully identifies
time-periods for which one speaker is dominant over the other
speakers. Comparing Fig. 9(a) and (b), we observe that as more
speakers are involved in the mixture, then less time-periods are
dominated by a single speaker.

D. Performance on Simulated Data

The separation performance is assessed by the signal to in-
terference ratio (SIR) and signal to distortion ratio (SDR) mea-
sures, using the BSS-Eval toolbox [45]. We also quantify the
improvement in speech intelligibility through the short-time ob-
jective intelligibility (STOI) measure [46], where we used the
signals of the individual speakers, as received by the first micro-
phone, as the reference signals for evaluating the STOI measure.
The measures are averaged over 20 Monte-Carlo trials, in which
the angles and the distances of the sources, as well as their input
sentences, are randomly selected.

We compare the proposed method to two oracle methods,
which are also based on the unmixing scheme of (26). In addi-
tion, we compare to a multichannel NMF algorithm [14] rep-
resenting state of-the-art algorithms of the BSS family. The
methods based on (26) use either of the following procedures
for estimating the RTFs, used to compute the unmixing matrix:

Fig. 9. Time-domain waveforms of each of the speakers for mixtures of
(a) J = 2 and (b) J = 4 speakers. Time instances, which were detected to
be dominated by each of the speakers, are shaded in compatible colors: blue for
the first speaker (top), green for the second speaker, red for the third speaker, and
cyan for the fourth speaker (down). The probability threshold β for detecting
single speaker frames is set to 0.9.

1) Ideal: The RTFs are estimated using the individually mea-
sured signals, i.e.:

Ĥm
j (f) =

∑L
l=1 Y m

j (l, f)Y 1∗
j (l, f)

∑L
l=1 Y 1

j (l, f)Y 1∗
j (l, f)

. (28)

2) Semi-Ideal: The RTFs are estimated by (25) based on
the measured mixtures (10), where the sets {Lj}J

j=1
are determined using the oracle speakers’ probabilities
computed by:

l ∈ Lj , if

∑
m,f ‖Y m

j (l, f)‖2

∑J
j=1

∑
m,f ‖Y m

i (l, f)‖2
> γ (29)

where γ is a threshold set to 0.95, 0.9 or 0.8 for J = 2,
J = 3 or J = 4, respectively.

3) Proposed: The RTFs are estimated by (25), where the
sets Lj , 1 ≤ j ≤ J are determined using the proposed
algorithm, presented in Section III-B, where β is set
to 0.9.

The parameters of the NMF algorithm are initialized using the
separated speakers, which are artificially mixed with SIR that is
improved with respect to the input SIR of the given mixture by
3 dB.

We evaluate the performance of all the algorithms depending
on the number of speakers and on the reverberation time. The
results depending on the number of speakers are depicted in
Table III for J = {2, 3, 4}, with a fixed reverberation time of
360 ms. The results depending on the reverberation time are
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Fig. 10. Example of separation performance on a mixture with J = 2 speakers: spectrograms and waveforms of the first speaker at the first microphone (a), the
mixture of the two speakers at the first microphone (b), the estimated first speaker (c).

TABLE III
SEPARATION AND INTELLIGIBILITY PERFORMANCES DEPENDING ON THE NUMBER OF SPEAKERS (RT = 360 MS). “PROPOSED” METHOD IS COMPARED TO TWO

ORACLE METHODS “IDEAL” AND “SEMI-IDEAL” AND TO A MULTICHANNEL “NMF” ALGORITHM WITH SEMI-BLIND INITIALIZATION

TABLE IV
SEPARATION AND INTELLIGIBILITY PERFORMANCES DEPENDING ON REVERBERATION TIME (3 SPEAKERS). “PROPOSED” METHOD IS COMPARED TO TWO ORACLE

METHODS “IDEAL” AND “SEMI-IDEAL” AND TO A MULTICHANNEL “NMF” ALGORITHM WITH SEMI-BLIND INITIALIZATION

depicted in Table IV for T60 = {160, 360, 610}ms, for mixtures
of J = 3 speakers.

We observe that the ideal unmixing yields the best results. In
fact, it represents an upper bound for the separation capabilities,
since it is derived using the separated speakers. The semi-ideal
unmixing is inferior with respect to the upper bound, since the
ideal unmixing uses the original signals for estimating the RTFs,
whereas the semi-ideal unmixing uses non-pure frames from the
mixed signals, which may contain also low energy components
of other speakers. The proposed estimator determines the frames
dominated by each speaker based on the mixed signals. Its per-
formance is comparable to the semi-ideal unmixing with a small
gap of 0−1.1 dB. The NMF method is inferior with respect to
the proposed method in almost all cases. It should be empha-
sized that the NMF algorithm uses an initialization with im-
proved SIR, whereas the proposed method is completely blind.
In terms of intelligibility improvement, all algorithms achieve
comparable results. For all algorithms, a performance degrada-
tion is observed as the number of speakers increases or as the
reverberation time increases. It should be noted that for both
the semi-ideal unmixing and the proposed method, an increase
in the number of speakers means a decrease in the number of
frames dominated by a single speaker, hence, the performance
gap between both algorithms and the ideal unmixing increases.

Fig. 10 presents an example of the spectrograms and the wave-
forms of a mixture of J = 2 speakers, where the first speaker (a),
the mixture (b), and the output signal of the proposed method (c),

TABLE V
TIME-LINE OF SIGNALS’ ACTIVITY IN THE REAL-LIFE RECORDINGS

are depicted. It is evident that the spectral components of the sec-
ond speaker are significantly attenuated, while preserving most
of the spectral components of the first speaker. There is also a
good match between the original and the output waveforms.

E. Performance on Real-Life Recordings

We also examined the performance on real-life recordings
carried out in a low echoic noisy enclosure as described in [31].
The speakers are located in four optional positions. Their sig-
nals are measured by a U-shaped array with M = 7 omnidirec-
tional microphones. Six speakers (3 males and 3 females) and
a diffuse noise were recorded separately, and were used to con-
struct mixtures of J = 2 speakers with different combinations
of SIR and signal to noise ratio (SNR). The time-line of signals’
activity for all scenarios is described in Table V. We applied
the proposed algorithm to mixtures with different SIR levels
{−15,−10,−5, 0} dB and a fixed signal to noise ratio (SNR)
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Fig. 11. STOI performance as a function of the input SIR on real-life noisy
recordings with J = 2 speakers and SNR set to 15 dB. The proposed method
is compared to a DNN-based concurrent speaker detector [31] and to an inde-
pendent vector analysis (IVA) algorithm [32].

Fig. 12. Example of separation performance on real-life recordings of a mix-
ture of J = 2 speakers, with SNR = 15 dB and SIR = −15 dB: spectrograms
and waveforms of a mixture of two speakers at the first microphone (a), the
estimated second speaker (b).

of 15 dB. Due to the presence of background noise, instead of
the unmixing in (26) we used the following linearly constrained
minimum variance (LCMV) beamformer, which extracts one of
the speakers, while suppressing the other speaker and reducing
the noise level:

z(l, f) = bH (f)y(l, f)

b(f) = Φ−1
vv (f)C(f)(C(f)H Φ−1

vv (f)C(f))−1g

where g = [1, 0]T and Φvv(f) is the noise correlation matrix of
size M × M . The estimation of Φvv(f) is based on noise-only
frames, which are detected as frames with correlation below
0.3 with all other frames. We compare the performance of the
proposed method with an LCMV beamformer controlled by a
DNN-based concurrent speaker detector, presented in [31]. In

addition, we also compare our method with an independent vec-
tor analysis (IVA) algorithm [32], [47], which is an extension
of ICA that circumvents the problem of permutation ambiguity
across frequency bins. Fig. 11 depicts the STOI measure [46]
obtained for the input signal and for the output signals of all al-
gorithms. The STOI scores were evaluated on the time segment
between 9−16 s, when the two speakers overlap. We observe
the superiority of the proposed method over [31] for all SIR
levels, and a slight superiority of the proposed method over [32]
for low SIR levels. In terms of computational complexity, the
proposed method exhibits remarkable advantage over IVA, as its
processing takes on average 1.9 s, whereas the IVA processing
takes on average 27.4 s, when both are implemented in MAT-
LAB on a standard PC (CPU Intel Core Quad 2.8 GHz, RAM
16 GB). Fig. 12 depicts an example of the spectrograms and the
waveforms of the input and the output signals. Comparing to
the activity timeline presented in Table V, it is clearly seen
that the second speaker is successfully suppressed at the output
signal of the proposed method.

V. CONCLUSION

We present a novel framework for speaker counting and sep-
aration in a completely blind manner. The separation is based
on the sparsity of speech in the STFT domain, as well as the fact
that each speaker is associated with a unique spatial signature,
manifested by the RTF between the speaker and the micro-
phones. A spectral decomposition of the correlation matrix of
different time frames reveals the number of speakers, and forms
a simplex of the speakers’ probabilities across time. Utilizing
convex geometry tools, the frames dominated by each speaker
are identified. The RTFs of the different speakers are estimated
using these identified frames, and an unmixing scheme is imple-
mented to separate the individual speakers. The performance is
demonstrated in an experimental study for various reverberation
levels.

APPENDIX A

In this section, we compute the expected correlation between
observations and evaluate its variance. The computation is based
on the statistical model of Section II. Recall the following as-
sumption regarding the hidden sources:

E
{

hi(k)hj (k̃)
}

= δij · δkk̃ (30)

which follows from (1), the zero-mean assumption and the mu-
tual independence of the hidden sources. In addition, the indi-
cator functions satisfy (recall (3)):

Ij (l, k)Ii(l, k) = Ij (l, k)δij . (31)

We compute the correlation for 1 ≤ l, n ≤ L, l �= n:

E

{
1
D

aT (l)a(n)
}

=
1
D

E

⎧
⎨

⎩

D∑

k=1

J∑

i,j=1

Ii(l, k)Ij (n, k)hi(k)hj (k)

⎫
⎬

⎭

=
1
D

D∑

k=1

J∑

i,j=1

E {Ii(l, k)Ij (n, k)}E {hi(k)hj (k)}
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=
1
D

D∑

k=1

J∑

i,j=1

E {Ii(l, k)}E {Ij (n, k)}E {hi(k)hj (k)}

=
1
D

D∑

k=1

J∑

i,j=1

pi(l)pj (n)δij =
J∑

j=1

pj (l)pj (n). (32)

The second equality follows from the independence of the in-
dicator functions and the sources. The third equality follows
from the independence of the indicator functions for l �= n. The
fourth equality is due to (30).

For l = n the autocorrelation is given by:

E

{
1
D

aT (l)a(l)
}

=
1
D

D∑

k=1

J∑

i,j=1

E {Ii(l, k)Ij (l, k)}E {hi(k)hj (k)}

=
1
D

D∑

k=1

J∑

j=1

E {Ij (l, k)}E
{
h2

j (k)
}

=
J∑

j=1

pj (l) = 1 (33)

where the second equality follows from (31).
We compute the variance of (32):

Var

{
1
D

a(l)T a(n)
}

=
1

D2 E
{
(a(l)T a(n))2} − 1

D2 E2 {
a(l)T a(n)

}
. (34)

We show that the variance (34) approaches zero for D large
enough, implying that the typical value 1

D aT (l)a(n) approaches
the expected value E

{ 1
D aT (l)a(n)

}
.

The first moment is given in (32). We compute the second
moment for 1 ≤ l, n ≤ L, l �= n:

E
{
(aT (l)a(n))2}

= E

⎧
⎨

⎩

⎛

⎝
D∑

k=1

J∑

i,j=1

Ii(l, k)Ij (n, k)hi(k)hj (k)

⎞

⎠

2⎫
⎬

⎭

=
D∑

k,k̃=1

J∑

i,j,
ĩ,j̃=1

E
{

Ii(l, k)Ij (n, k)Iĩ(l, k̃)Ij̃ (n, k̃)
}

· E
{

hi(k)hj (k)hĩ(k̃)hj̃ (k̃)
}

. (35)

Splitting the sum over k̃ into two parts, for k̃ = k and for k̃ �= k,
we receive:

E
{
(aT (l)a(n))2}

=
D∑

k=1

J∑

i,j,
ĩ,j̃=1

E
{

Ii(l, k)Ij (n, k)Iĩ(l, k)Ij̃ (n, k)
}

· E
{

hi(k)hj (k)hĩ(k)hj̃ (k)
}

+
D∑

k,k̃=1
k̃ �=k

J∑

i,j,
ĩ,j̃=1

E
{

Ii(l, k)Ij (n, k)Iĩ(l, k̃)Ij̃ (n, k̃)
}

· E
{

hi(k)hj (k)hĩ(k̃)hj̃ (k̃)
}

=
D∑

k=1

J∑

i,j=1

E {Ii(l, k)}E {Ij (n, k)}E
{
h2

i (k)h2
j (k)

}

+
D∑

k,k̃=1
k̃ �=k

J∑

i,j,
ĩ,j̃=1

E {Ii(l, k)}E {Ij (n, k)}

· E
{
Iĩ(l, k̃)

}
E

{
Ij̃ (n, k̃)

}
E

{
hi(k)hj (k)hĩ(k̃)hj̃ (k̃)

}
(36)

where the second equality follows from (31), and the indepen-
dence of the indicator functions for l �= n or k �= k̃. Evaluating
the expectations of the indicators, we get:

E
{
(a(l)T a(n))2} =

D∑

k=1

J∑

i,j=1

pi(l)pj (n)E
{
h2

i (k)h2
j (k)

}

+
D∑

k,k̃=1
k̃ �=k

J∑

i,j,
ĩ,j̃=1

pi(l)pj (n)pĩ(l)pj̃ (n)E
{
hi(k)hj (k)hĩ(k̃)hj̃ (k̃)

}
.

(37)

Relying on the independence between hi(k) and hĩ(k̃) for k �=
k̃, and on the statistical model of (30), the second term of (37)
is simplified as:

J∑

i,j,
ĩ,j̃=1

pi(l)pj (n)pĩ(l)pj̃ (n)E
{

hi(k)hj (k)
}

E
{

hĩ(k̃)hj̃ (k̃)
}

=
D∑

k,k̃=1
k̃ �=k

J∑

i,j,
ĩ,j̃=1

pi(l)pj (n)pĩ(l)pj̃ (n)δij δĩj̃

= D(D − 1)
J∑

j,j̃=1

pj (l)pj (n)pj̃ (l)pj̃ (n)

= D(D − 1)

⎛

⎝
J∑

j=1

pj (l)pj (n)

⎞

⎠

2

. (38)

Substituting (38) into (37), we get:

E
{
(aT (l)a(n))2} =

D∑

k=1

J∑

i,j=1

pi(l)pj (n)E
{
h2

i (k)h2
j (k)

}

+ D(D − 1)

⎛

⎝
J∑

j=1

pj (l)pj (n)

⎞

⎠

2

. (39)
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Substituting (32) and (39) into (34), we receive:

Var

{
1
D

a(l)T a(n)
}

=
1

D2 E
{
(a(l)T a(n))2} − 1

D2 E2 {
a(l)T a(n)

}

=
1

D2

D∑

k=1

J∑

i,j=1

pi(l)pj (n)E
{
h2

i (k)h2
j (k)

}

+
D(D − 1)

D2

⎛

⎝
J∑

j=1

pj (l)pj (n)

⎞

⎠

2

−
⎛

⎝
J∑

j=1

pj (l)pj (n)

⎞

⎠

2

.

(40)

For D large enough, we have D−1
D ≈ 1, and (40) simplifies to:

Var

{
1
D

a(l)T a(n)
}

≈ 1
D2

D∑

k=1

J∑

j=1

pj (l)pj (n)E
{
h4

j (k)
}

+
1

D2

D∑

k=1

J∑

i,j=1
i �=j

pi(l)pj (n)E
{
h2

i (k)
}

E
{
h2

j (k)
}

=
1

D2

D∑

k=1

J∑

j=1

pj (l)pj (n)E
{
h4

j (k)
}

+
1
D

J∑

i,j=1
i �=j

pi(l)pj (n).

(41)

In the second term in (41), we have:

J∑

j=1

⎛

⎜
⎝pj (n)

J∑

i=1
i �=j

pi(l)

⎞

⎟
⎠ =

J∑

j=1

pj (n) (1 − pj (l))

= 1 −
J∑

j=1

pj (l)pj (n). (42)

Let E
{
h4

j (k)
} ≡ C4 , substituting (42) into (41), we get:

Var

{
1
D

a(l)T a(n)
}

≈ C4

D

J∑

j=1

pj (l)pj (n) +
1
D

⎛

⎝1 −
J∑

j=1

pj (l)pj (n)

⎞

⎠

=
C4 − 1

D

J∑

j=1

pj (l)pj (n) +
1
D

≤ C4 − 1
D

+
1
D

=
C4

D
.

(43)

For zero-mean Gaussian sources C4 = E
{
h4

j (k)
}

= 3E{h2
j

(k)}, which under the unit variance assumption amounts to
C4 = 3. Hence, we can easily set the value of D, satisfy-
ing D � C4 . Accordingly, we get Var

{ 1
D aT (l)a(n)

} ≈ 0.
We conclude that for D large enough the typical value of
1
D aT (l)a(n) is close to its expected value E

{ 1
D aT (l)a(n)

}
.

Hence, 1
D aT (l)a(n) can be used instead of its expected value.

APPENDIX B

In this section, we discuss the spectral decomposition of the
correlation matrix W, and its approximation as W ≈ PPT .
Recall the following representation of the correlation matrix W
(Eq. (5)):

W = PPT + ΔW (44)

where ΔW is a diagonal matrix with ΔWll = 1 − ∑J
j=1 p2

j (l).
Here, we analyse the influence of ΔW on the obtained spectral
decomposition, and show that it has a negligible affect on the
proposed speaker counting and separation method.

For this purpose, we use matrix perturbation theory [48].
Consider the perturbed matrix W given by:

W = K + ΔW (45)

where the matrix ΔW represents a small perturbation. Ac-
cording to the matrix perturbation theory [48], the following
Theorem relates the EVDs of the matrices W and K:

Theorem 1: Let {λj ,uj}j be the set of eigenvalues and
eigenvectors of the matrix K, and let {λ̃j , ũj}j be the set of
eigenvalues and eigenvectors of the matrix W = K + ΔW.
Then:

λ̃j = λj + uT
j ΔWuj + O

(‖ΔW‖2) (46)

ũj = uj +
∑

i �=j

uT
i ΔWuj

λj − λi
ui + O

(‖ΔW‖2) . (47)

According to Theorem 1, each eigenvalue λ̃j of the perturbed
matrix deviates from the corresponding eigenvalue λj of the
original matrix by the weighted norm uT

j ΔWuj . In addition,
each perturbed eigenvector ũj equals the corresponding original
eigenvector uj plus a term, which consists of the contributions
of the other eigenvectors of the original matrix. The contribution
of the other eigenvectors is proportional to the weighted inner
product uT

i ΔWuj divided by the difference λj − λi between
the corresponding eigenvalues.

In our case, the original matrix K ≡ PPT has a rank-J de-
composition. Accordingly, PPT has J nonzero eigenvalues
Λ1 ≡ {λj}J

j=1 , associated with J eigenvectors U1 ≡ {uj}J
j=1

that span the column space of the matrix P. In addition, there
are L − J zero eigenvalues Λ0 ≡ {λj}L

j=J +1 , associated with
L − J eigenvectors U0 ≡ {uj}L

j=J +1 that span the null space
of P.

The weighted inner product can be written as:

uT
i ΔWuj = vT

i vj = ‖vi‖‖vj‖ cos θij (48)

where vj = Auj with ΔW = AT A, and θij is the angle be-
tween vi and vj . In our case, A is a diagonal matrix with ele-

ments All =
√

1 − ∑J
j=1 p2

j (l) ≤ 1, implying ‖vj‖ ≤ ‖uj‖ =
1. We assume that multiplication by A only slightly affects the
right angle between the orthonormal vectors ui and uj for i �= j,
implying cos θij ≈ ε. Hence, we get the following bound:

∣
∣uT

i ΔWuj

∣
∣ ≤

{
ε if i �= j
1 if i = j

. (49)
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Accordingly, the eigenvalue perturbation is limited to 1 and
the eigenvector perturbation depends on the ratio ε

λj −λi
. An

eigenvector uj ∗ will have a small contribution from the vector
ui , when |λj∗ − λi | � ε.

Note that in the proposed algorithm we are only interested
in the eigenvectors in U1 , spanning the column space of PPT .
For a particular uj ∗ ∈ U1 , there may be some contribution of the
other eigenvectors inU1 , depending on the respective eigenvalue
decay. The contribution of eigenvectors in U0 , associated with
zero eigenvalues, is necessarily smaller and is negligible for
|λj∗| � ε.

We demonstrate the conclusions of the above analysis using
the example of Section II-B. We compute the eigenvectors of
PPT and of W, and measure their correlation for J = 3. We
present the correlation between the first 3 eigenvectors of W
and the first 5 eigenvectors of PPT :

⎡

⎢
⎣

1 −4e−16 −6e−5 −6e−5 −3e−5

4e−5 1 −5e−3 −4e−6 2e−5

−6e−5 −5e−3 1 1e−4 −7e−5

⎤

⎥
⎦

where the (i, j)th element equals ũT
i uj . We deduce that ũj ≈

uj for 1 ≤ j ≤ 3, i.e., the first J eigenvectors of W are almost
identical to the first J eigenvectors of PPT . We also compare
between the first 5 eigenvalues of both matrices:

λ1 = 167, λ2 = 44, λ3 = 37, λ4 = 8e−15 , λ5 = 8e−15

λ̃1 = 168, λ̃2 = 44, λ̃3 = 38, λ̃4 = 0.7, λ̃5 = 0.7. (50)

We observe that |λ̃j − λj | ≤ 1 as expected. Note that the slight
differences between the eigenvalues, seem to have a minor im-
pact on the decision rule of (19), for counting the number of
sources. We conclude that the derivations in Section II, regard-
ing the spectral decomposition of the matrix PPT , apply also
for the correlation matrix W.
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