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Semi-Supervised Source Localization on Multiple
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Abstract—The problem of single-source localization with ad
hoc microphone networks in noisy and reverberant enclosures is
addressed in this paper. A training set is formed by prerecorded
measurements collected in advance and consists of a limited
number of labelled measurements, attached with corresponding
positions, and a larger number of unlabelled measurements from
unknown locations. Further information about the enclosure
characteristics or the microphone positions is not required. We
propose a Bayesian inference approach for estimating a function
that maps measurement-based features to the corresponding
positions. The signals measured by the microphones represent
different viewpoints, which are combined in a unified statistical
framework. For this purpose, the mapping function is modelled by
a Gaussian process with a covariance function that encapsulates
both the connections between pairs of microphones and the
relations among the samples in the training set. The parameters of
the process are estimated by optimizing a maximum likelihood cri-
terion. In addition, a recursive adaptation mechanism is derived,
where the new streaming measurements are used to update the
model. Performance is demonstrated for both simulated data and
real-life recordings in a variety of reverberation and noise levels.

Index Terms—Acoustic manifold, Gaussian process, maximum
likelihood (ML), relative transfer function (RTF), sound source
localization.

I. INTRODUCTION

ACOUSTIC source localization is an essential compo-
nent in various audio applications, such as: automated

camera steering and teleconferencing systems [1], speaker
separation [2] and robot audition [3]–[5]. Thus, the localization
problem has attracted a significant research attention, and a
large variety of localization methods were proposed during
the last decades. The main challenge facing the research
community is how to perform robust localization in adverse
conditions, namely, in the presence of background noise and
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reverberations, which are the main causes for performance
degradation of localization algorithms.

Broadly, traditional localization methods can be divided
into three main categories: methods based on maximization
of the steered response power (SRP) of a beamformer out-
put, high-resolution spectral estimation techniques, and dual-
stage approaches relying on a time difference of arrival (TDOA)
estimation. In the first category, the position is estimated directly
from the measured signals after being filtered and summed to-
gether. Commonly, the maximum likelihood (ML) criterion is
applied, which in the case of a single source, culminates in in-
specting the output power of a beamformer steered to different
locations and in searching the points where it receives its maxi-
mum value [6]. The second category consists of high resolution
methods, such as multiple signal classification (MUSIC) [7]
and estimation of signal parameters via rotational invariance
(ESPRIT) [8] algorithms, that are based on the spectral analy-
sis of the correlation matrix of the measured signals. Subspace
methods can also be applied using spherical harmonics [9]–[11].
In the third category, a dual stage approach is applied. In the
first stage, the TDOAs of different pairs of microphones are es-
timated and collected. The different TDOA readings correspond
to single-sided hyperbolic hyperplanes (in 3D) representing pos-
sible positions. The intersection of these hyperplanes yields the
estimated position. In these types of approaches the quality of
the localization greatly depends on the quality of the TDOA
estimation in the first stage. The classical method for TDOA
estimation, which assumes a reverberant-free model, is the gen-
eralized cross-correlation (GCC) algorithm introduced in the
landmark paper by Knapp and Carter [12]. Many improvements
of the generalized cross-correlation (GCC) method for the re-
verberant case were proposed, e.g. in [13]–[17]. Among these
methods for TDOA estimation in reverberant conditions, there
are subspace methods based on adaptive eigenvalue decompo-
sition [18] and generalized eigenvalue decomposition [19]. Of
special importance is the SRP-phase transform (SRP-PHAT) al-
gorithm proposed in [20]. This method is related to both the
first and the third categories, since it combines in a single step
the features of a steered-beamformer with those of the phase
transform weighting of the GCC algorithm.

Most of the traditional localization approaches are based on
physical models and rely on certain assumptions regarding the
propagation model and the statistics of the signals and the noise.
However, real-world scenarios, characterized by complex re-
flection patterns, can be described by intricate models, which
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are difficult to estimate. Recently, there is a growing interest in
learning-based localization approaches, which attempt to learn
the characteristics of the acoustic environment directly from the
data, in contrast to using a predefined physical model. Typi-
cally, these approaches assume that a training set of prerecorded
measurements is given in advance. Supervised methods utilize
microphone measurements of sources from known locations,
while unsupervised approaches solely utilize the measurements,
without knowing their exact source positions.

Learning-based approaches were proposed for both micro-
phone array localization and binaural localization. In the bin-
aural hearing context, Deleforge and Horaud have proposed
a probabilistic piecewise affine regression model that infers
the localization-to-interaural data mapping and its inverse [21].
They have extended this approach to the case of multiple sources
using the variational Expectation Maximization (EM) frame-
work [22], [23]. In [24], another approach was presented based
on a Gaussian Mixture Model (GMM), which was used to learn
the azimuth-dependent distribution of the binaural feature space.
In [25], a binaural localization method was proposed by assess-
ing the mutual information between each of the spatial cues and
the corresponding source location. In [26], GCC-based feature
vectors were extracted and used for training a multilayer percep-
tron neural network that outputs the source direction of arrival
(DOA). A method for DOA estimation of multiple sources was
presented in [27], using an EM clustering approach. A localiza-
tion method for a source located behind an obstacle that blocks
the direct propagation path was presented in [28]. The algorithm
uses co-sparse data analysis based on the physical model of the
wave propagation. The model was extended in [29] to the case
where the physical properties of the enclosure are not known in
advance.

Talmon et al. [30] introduced a supervised method based
on manifold learning, aiming at recovering the fundamental
controlling parameter of the acoustic impulse response (AIR),
which coincides with the source position in a static environment.
The method was applied to a single microphone system with a
white Gaussian noise (WGN) input [31]. In [32] we adopted the
paradigm of [31] and adapted it to a speech source, using a dual-
microphone system with a power spectral density (PSD)-based
feature vector. Another approach for semi-supervised source lo-
calization with a single microphone pair, based on a regularized
optimization in a reproducing kernel Hilbert space (RKHS), was
recently presented in [33].

In this paper, we consider a setup consisting of multiple nodes,
where each node comprises a pair of microphones. No additional
assumptions, particularly on their specific (unknown) locations,
are made. We anticipate that such an extension of the setup,
comprising much more spatial information, is both practical
and may lead to improved accuracy of localization tasks. In our
recent work [34], we reformulated the optimization problem pre-
sented in [33] using a Bayesian inference approach for the single
node case. Following [35], [36], the mapping function between
the acoustic samples and their corresponding source positions,
was modelled as a Gaussian process with a covariance function
that was built based on a certain kernel function. This Bayesian
framework serves as a corner stone for extending the single node

setup to a network of multiple nodes. Here as well, we utilize
a set of prerecorded measurements for identifying unique pat-
terns and geometrical structures, which characterize the acoustic
samples in a given enclosure. The gist of the algorithm is the
definition of a Gaussian process with a new covariance function
that merges the different viewpoints presented by the different
nodes. In addition, this statistical framework allows for the rig-
orous estimation of the model parameters as an integral part of
the optimization procedure, through an appropriate maximum
likelihood (ML) criterion. Moreover, a recursive version is de-
rived, where the new samples acquired during the test stage are
utilized for updating the covariance of the process.

The paper is organized as follows. In Section II, we for-
mulate the problem in a general noisy and reverberant envi-
ronment. We discuss the existence of an acoustic manifold for
each node and present the statistical model. A manifold-based
Gaussian process is presented in Section III, and the relations
between the nodes are defined. These definitions are unified by
the multiple-manifold Gaussian process (MMGP) presented in
Section III, which combines together the information from all
the nodes. Based on this model a Bayesian estimator is derived in
Section V. We present a recursive adaptation mechanism, and
describe how to estimate the model parameters using an ML
criterion. In Section VI, we demonstrate the algorithm perfor-
mance by an extensive simulation study, and real-life recordings.
Section VII concludes the paper.

II. PROBLEM FORMULATION

A single source is located in a reverberant enclosure at posi-
tion q = [qx, qy , qz ]T . Consider an ad hoc network with mi-
crophones distributed in the enclosure. We assume that the
microphones are arranged in M nodes, where each node con-
sists of a pair of microphones positioned side-by-side (up to half
a meter distance). The source produces an unknown speech sig-
nal s(t), which is measured by all the microphones. The signal
received by the ith microphone of the mth pair, is given by:

ym
i (t) = am

i (t,q) ∗ s(t) + um
i (t) m = 1, . . . ,M ; i = 1, 2

(1)
where am

i (t,q) is the acoustic impulse response (AIR) relating
the source at position q and the ith microphone in the mth node,
and um

i (t) is an additive noise signal, which contaminates the
corresponding measured signal. Linear convolution is denoted
by ∗.

Clearly, the information required for localization is embed-
ded in the AIR and is independent of the source signal. Thus,
from each pair of measurements we extract a feature vector hm

that depends solely on the two AIRs of the corresponding node
and is independent of the non-stationary source signal. More
specifically, we use a feature vector based on relative trans-
fer function (RTF) estimates [37] in a certain frequency band,
which is commonly used in acoustic array processing [37], [38].
Please refer to Appendix A for further details about the (RTF)
and its estimation. The RTFs are typically represented in a high-
dimensional space with a large number of coefficients to allow
for the full description of the acoustic paths, which represent a
complex reflection pattern. The observation that the RTFs are
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controlled by a small set of parameters, such as room dimen-
sions, reverberation time, location of the source and the sensors
etc., gives rise to the assumption that they are confined to a low
dimensional manifold. In [39] and [33], we have shown that the
RTFs of a certain node have a distinct structure. Hence, they are
not uniformly distributed in the entire space, but rather pertain
to a manifold Mm of much lower dimensions.

We define the function fm
a : Mm → R a ∈ {x, y, z}

which maps an RTF sample hm associated with the mth node
to the corresponding x, y or z coordinate of the source position
fm

a (hm ). In the following derivation the three coordinates are
estimated individually. Further justification for a separate treat-
ment for each coordinate is discussed in Section VI-C. Since the
same estimation is used for each coordinate, the axis notation
is omitted henceforth. Let pm

i ≡ fm (hm
i ) denote the position

evaluated by the function fm for the RTF sample hm
i , where

i is a sample index referring to a certain position. In this nota-
tion, the superscript denotes association to a certain node, and
the subscript denotes association to a certain position index.
Note that although the position of the source does not depend
on the specific node, the notation pm

i is used to express that
the mapping is obtained from the measurements of the mth
node.

The mth RTF represents the reflection pattern originating
from the source and received by the mth node. Assuming that the
different nodes are scattered over the room area, they experience
a distinct reflection pattern, which differs from that experienced
by other nodes. Each RTF hm represents a different view point
on the same acoustic event of a source speaking at some location
in the enclosure. A particular node may have an accurate view
of certain regions in the room and yet lacking on others. For
example, closer distances are better viewed, while remote posi-
tions are not well distinguished. The view point of each node is
reflected by the manifold Mm whose structure represents the
relations between different RTFs, as they are inspected by that
node. Combining the information from the different nodes may
therefore increase the spatial separation and improve the ability
to accurately locate the source. The central issue is then how
to fuse the information provided by each of the M nodes to
achieve this goal.

Let h =
[
[h1 ]T , . . . , [hM ]T

]T
denote the aggregated RTF

(aRTF), which is a concatenation of the RTF vectors from
every node. We define the scalar function f : ∪M

m=1Mm → R
which attaches an aRTF sample hi with the corresponding x,
y or z coordinate of the source position pi ≡ f(hi). In the first
step, we discuss each node and its mapping function fm , and
then we combine the different views in the definition of the
function f .

In a fixed acoustic environment, the function fm that relates
hm

i to its position pm
i (which is a scalar since it represents the x,

y or z coordinate of the position), is deterministic, in the sense
that a certain reflection pattern expressed by the mth RTF is ex-
clusively associated with a certain position. However, even when
all the environmental parameters are fixed and known, there is
no simple model that links a given RTF sample to its position.
Hence, we use the statistical model presented in [34]. An RTF

TABLE I
NOMENCLATURE

hm
i an RTF sample of the m th node associated with position p i

h i an aggregated RTF (aRTF) sample associated with position p i ,
consisting of RTFs of all M nodes

pm
i a position associated with hm

i , drawn from the Gaussian process
pm of the m th node

pi a position associated with h i , drawn from the Gaussian process
p

Mm the manifold associated with RTFs of the mth node

hm
i is assumed to be sampled from the manifold Mm . The RTF

sample hm
i is related by the function fm to the corresponding

position pm
i . We assume that pm follows a Gaussian process,

as will be described in Section III. A nomenclature listing the
different symbols and their meanings is given in Table I.

The estimation is semi-supervised and is based on a training
set of aRTF samples associated with various source positions,
measured in advance. However, the microphone positions may
be unknown since they are not required for the estimation. The
training set consists of two subsets: a small subset of aRTF
samples with ‘labels’, i.e. with known source positions, and a
large subset of aRTF samples without labels, i.e., with unknown
source locations. The first subset consists of nL labelled sam-
ples, denoted by HL = {hi}nL

i=1 , and their associated measured
positions {p̄i}nL

i=1 . The labelled positions are marked by bars
since they may slightly differ from the actual positions due to
imperfections in the measurements. Note also that though all
three coordinates of the position are measured for each labelled
sample, PL is defined as a collection of scalars (associated with a
certain coordinate) rather than vectors, since the same derivation
applies separately to each coordinate. The second subset con-
sists of nU unlabelled samples, denoted by HU = {hi}nD

i=nL +1 ,
where nD = nL + nU . The entire training set consists of nD

aRTF samples and is denoted by HD = HL ∪ HU . In the test
stage, we receive a new set HT = {hi}n

i=nD +1 of nT new aRTF
samples from unknown locations, where n = nD + nT . The
entire set, including both the training and the test samples, is
denoted by H = HD ∪ HT .

III. MANIFOLD-BASED GAUSSIAN PROCESS

We first present the statistical model for each node individ-
ually, and then discuss the relations between different nodes.
Finally, we define the function f that combines the data from all
the nodes in a way that respects both the intra-relations within
each node and the inter-relations between the different nodes.

We assume that pm follows a Gaussian process, i.e. any fi-
nite set of positions associated with RTFs of the mth node, are
jointly distributed Gaussian variables. The Gaussian process is
a convenient choice since it is entirely defined by its second
order statistics, and is widely used for regression problems [40].
We use a zero-mean Gaussian process for simplicity. By set-
ting the origin to the middle of the enclosure of interest, the
zero-mean assumption reflects that all possible source positions
are distributed around the origin. The covariance function is a
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pairwise affinity measure between two RTF samples. We sug-
gest to use a manifold-based covariance function, in which the
relation between two RTFs is not only a function of the current
samples, but also uses the information from the entire available
set of RTF samples:

cov(pm
r , pm

l ) ≡
nD∑

i=1

km (hm
r ,hm

i )km (hm
l ,hm

i )

= 2km (hm
r ,hm

l ) +
nD∑

i = 1
i �= l , r

km (hm
r ,hm

i )km (hm
l ,hm

i ) (2)

where l and r represent ascription to certain positions, and km

is a standard pairwise function km : Mm ×Mm −→ R, often
termed “kernel function”. The equality in (2) holds for kernels
that satisfy: km (hm

i ,hm
j ) = 1 for i = j. A common choice is

to use a Gaussian kernel, with a scaling factor εm :

km (hm
i ,hm

j ) = exp

{

−‖hm
i − hm

j ‖2

εm

}

. (3)

The definition of the covariance in (2), induces a new type of
manifold-based kernel k̃m :

k̃m (hm
r ,hm

l ) ≡ cov(pm
r , pm

l ) (4)

In [34] we adopted the manifold-based kernel proposed by
Sindhwani et al. [36]. Here, we propose another type of kernel,
which is more convenient for estimating the model hyperpa-
rameters and for deriving a recursive adaptation mechanism. A
similar kernel was used to define a graph-based diffusion filter
in [41], and was applied in a patch-based de-noising algorithm
in [42]. The Euclidean distance between the high-dimensional
RTFs, used in the standard kernel km (hm

r ,hm
l ), does not prop-

erly reflect their distance with respect to the manifold Mm [39].
The new kernel k̃m (hm

r ,hm
l ) is based on {km (hm

l ,hm
i )}nD

i=1
and {km (hm

r ,hm
i )}nD

i=1 , which represent the relations between
each sample to all the training samples. The covariance in (2)
between hm

l and hm
r is evaluated by the correlation between

all the inspected relations, namely between {k(hm
l ,hm

i )}nD
i=1

and {k(hm
r ,hm

i )}nD
i=1 . In this formulation, the covariance is de-

termined according to the extent of correspondence between
the mutual relations of hm

l and hm
r to other samples on the

manifold. When both samples have similar relations to other
samples, it indicates that they are closely related, and the value
of k̃(hm

r ,hm
l ) increases respectively.

We also define the relation between the functions of differ-
ent nodes q and w, evaluated for two RTF samples associated
with different source positions. Namely, we define the relation
between pq

r and pw
l for 1 ≤ l, r ≤ nD . We assume that pq

r and
pw

l are jointly distributed Gaussian variables and that their co-
variance is defined by:

cov(pq
r , p

w
l ) ≡ k̃qw (hq

r ,h
w
l ) =

nD∑

i=1

kq (hq
r ,h

q
i )kw (hw

l ,hw
i ).

(5)
It is important to note that when examining the relation be-

tween functions evaluated for different nodes, we cannot di-
rectly compute the distance between the corresponding RTF

Fig. 1. An illustration of the covariance computation for RTF samples of
different nodes q and w.

samples since they represent different views. In (5), we exam-
ine the intra-relations {kq (hq

r ,h
q
i )}nD

i=1 in the qth manifold and
the intra-relations {kw (hw

r ,hw
i )}nD

i=1 in the wth manifold. The
inter-relations between hq

r and hw
l are evaluated by the correla-

tion between the relations formed on each manifold individually.
The covariance defined in (5) emphasizes similar relations ob-
served by both nodes, and discard relations observed by only
one of the nodes. An illustration of the inter-relation between the
two manifolds is illustrated in Fig. 1. Note that the single node
relation (2) can be considered as a special case of the multi-node
relation (5).

IV. MULTINODE DATA FUSION

So far, we have presented the statistical model and defined
a Gaussian process pm

i for each node. In addition, we have
defined the covariance of each individual process of a particular
node (2) and the cross-covariance between two processes of
two different nodes (5). Our goal is to unify these definitions
under one statistical umbrella which combines the information
provided by the different pairs and establishes a foundation for
deriving a Bayesian estimator for the source position.

A. Multiple-Manifold Gaussian Process

To fuse the different perspectives presented by the differ-
ent nodes, we define the multiple-manifold Gaussian process
(MMGP) p as the mean of the Gaussian processes of all the
nodes, i.e. each position pi drawn from the process is given by:

pi =
1
M

(
p1

i + p2
i + · · · + pM

i

)
. (6)

Due to the assumption that the processes are jointly Gaussian,
the process p is also Gaussian with zero-mean and covariance
function given by:

cov(pr , pl) =
1

M 2 cov

(
M∑

q=1

pq
r ,

M∑

w=1

pw
l

)

=
1

M 2

M∑

q ,w=1

cov(pq
r , p

w
l ). (7)
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Using the definitions of (2) and (5) we obtain the covariance for
pr and pl :

cov(pr , pl) ≡ k̃(hr ,hl)

=
1

M 2

nD∑

i=1

M∑

q ,w=1

kq (hq
r ,h

q
i )kw (hw

l ,hw
i ). (8)

Here, the covariance, evaluated for two samples from the pro-
cess p, is determined using all M 2 relations between the dif-
ferent nodes and by averaging over all the samples in HD .
Regarding computational complexity, note that due to symme-
try, some terms in (8) are equal when q and w are swapped, and
that k(hi ,hj ) = 1 for i = j. The covariance in (8), consists of
all inter-relations between the different nodes, enhancing ob-
servations which are common to pairs of nodes, and ignoring
relations that appear in only one node. Through the lens of
kernel-based learning, k̃(hr ,hl) can be considered as a compo-
sition of kernels, which, in addition to connections acquired in
each node separately, incorporates the extra spatial information
in the mutual relationship between RTFs of different nodes. This
formulation represents a robust measurement of correlation by
utilizing multiple view-points of the same acoustic scene, aim-
ing to improve the localization capabilities.

The resulting Gaussian process is zero-mean with covariance
function k̃:

p ∼ GP(0, k̃). (9)

Accordingly, the random vector pH = [p1 , . . . , pn ]T , which
consists of n samples from the process p, has a multivariate
Gaussian distribution, i.e.,

pH ∼ N (0n , Σ̃H ) (10)

where 0n is an n × 1 vector of all zeros and Σ̃H is the covari-
ance matrix with elements k̃(hi ,hj ), hi ,hj ∈ H . Note that the
covariance matrix Σ̃H can be expressed in terms of the covari-
ance matrices of all the individual nodes Km

H , defined by the
standard kernel (Km

H )ij = km (hm
i ,hm

j ) of (3):

Σ̃H =
1

M 2

M∑

q ,w=1

Kq
H Kw

H . (11)

In this representation, the covariance matrix for any finite set of
samples from the process is computed by a sum of all pairwise
multiplications between the covariance matrices of each of the
nodes.

B. Alternating Diffusion Interpretation

Before we proceed to the derivation of the estimation proce-
dure, which is based on these definitions, we present an alter-
native interpretation using a geometrical perspective from the
field of diffusion maps [43]. Specifically, we provide an inter-
pretation for the definitions of the covariance functions in (5)
and (8). As discussed above, every node represents a different
view point, which is realized by the structure of the associated
manifold Mm . We can create a discrete representation of the
mth manifold by a graph Gm in which the vertices represent

the RTF samples of the mth node and the weights connecting
between them are stored in the matrix Km

H . This way, we obtain
M graphs with matching vertices that are associated with the
same positions, but with different weighted edges determined by
the distances between the samples within each separate node.
In [44], the authors defined an alternating diffusion operator,
which constitutes a combined graph Gqw , where the weight
matrix is given by Kqw

H ≡ Kq
H Kw

H . They have shown that the
Markov process defined on the resulting graph extracts the un-
derlying source of variability common to the two graphs q and
w (related to the microphone nodes q and w).

In our case, an RTF is closely related to its associated posi-
tion, however it may be influenced by other factors as well, such
as estimation errors and noise. We assume that the interferences
introduced by a particular node differ from the ones introduced
by the other nodes. When measuring the correlation between
two nodes, we would like to emphasize the common source of
variability, namely the source position, and to suppress artifacts
and interferences, which are node-specific effects. By multi-
plying the kernels of each two nodes as indicated in (11), we
average out incoherent node-specific variables and remain only
with the common variable, which is the position of the source.
This perspective provides a justification to the averaging over
different nodes as well as over different samples, constituting a
robust measure of correlation between samples in terms of the
physical proximity between the corresponding source positions.

V. BAYESIAN INFERENCE WITH MULTIPLE-MANIFOLD

GAUSSIAN PROCESS

In the previous section we presented the MMGP p that relates
aRTF samples to the corresponding source positions. We have
shown that the covariance of the process depends on both the
internal relations within the same manifold (same node) and
the pairwise connections between different manifolds (different
nodes). Note that the covariance function of the process (8) is
based only on the aRTF samples in HD , and does not take into
account the labellings. The information implied by the labelled
samples HL and their associated labels PL is used to update our
prior belief about the behaviour of the process p, and to derive
its posterior distribution. The pairs {hi , p̄i}nL

i=1 serve as anchor
points utilized for interpolating a realization of the process p,
while the Gaussian process assumption in (9) is designed to
ensure the smoothness of the solution.

A. Localization With Multiple-Manifold Gaussian Process

Following the statistical model stated in Section II, we assume
that the measured positions PL = {p̄i}nL

i=1 of the labelled set
arise from a noisy observation model, given by:

p̄i = pi + ηi ; i = 1, . . . , nL (12)

where ηi ∼ N (0, σ2) i = 1, . . . , nL are i.i.d. Gaussian noises,
independent of pi . The noise in (12) reflects uncertainties due to
imperfect measurements of the source positions while acquiring
the labelled set. Note that since the Gaussian variables pi and
ηi are independent, they are jointly Gaussian. Consequently, pi

and p̄i are also jointly Gaussian. We define the likelihood of the
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process p based on the probability of the labelled examples:

Pr(PL |p,HL ) =
1√

2πσ2
exp

{

− 1
2σ2

nL∑

i=1

(p̄i − pi)2

}

. (13)

To perform localization, we are interested in estimating the
position of a new test sample ht ∈ HT of an unknown source
from an unknown location. The estimation is based on the pos-
terior probability Pr(pt ≡ f(ht)|PL,HL ). According to (10)
and (13), the function value at the test point pt and the con-
catenation of all labelled training positions pL = vec{PL} ≡
[p̄1 , . . . , p̄nL

]T are jointly Gaussian, with:
[
pL

pt

] ∣
∣
∣
∣HL ∼ N

(
0nL +1 ,

[
Σ̃L + σ2InL

Σ̃Lt

Σ̃T
Lt Σ̃t

])
(14)

where Σ̃L is an nL × nL covariance matrix defined over the
function values at the labelled samples HL , Σ̃Lt is an nL × 1
covariance vector between the function values at HL and pt , Σ̃t

is the variance of pt , and InL
is the nL × nL identity matrix.

This implies that the conditional distribution Pr(pt |PL,HL ) is a
multivariate Gaussian with μcond mean and σ2

cond variance given
by:

μcond = Σ̃T
Lt

(
Σ̃L + σ2InL

)−1
pL

σ2
cond = Σ̃t − Σ̃T

Lt

(
Σ̃L + σ2InL

)−1
Σ̃Lt . (15)

Hence, the maximum a posteriori probability (MAP) estimator
of pt , which coincides with the minimum mean squared error
(MMSE) estimator in the Gaussian case, is given by:

p̂t = μcond = Σ̃T
Lt p̃L (16)

where p̃L ≡ ΓLpL is a vector of weights which are independent

of the current test sample, and ΓL =
(
Σ̃L + σ2InL

)−1
. Note

that the estimator in (16) is obtained as a linear combination of
the kernel k̃ evaluated for the test sample ht and each of the
labelled samples HL , weighted by the entries of p̃L . Note that
the posterior is defined only with respect to the labelled samples,
hence the covariance terms are calculated based solely on the
labelled samples HL , without taking into account the samples
in the set HU as was defined in general in the previous sec-
tion. Although the unlabelled samples do not appear explicitly
in (16), they take role in the computation of the correlation terms
as implied by (8). In fact, the unlabelled samples are essential
both for obtaining a more accurate computation of the weights
p̃L , and for better quantifying the relations between the current
test sample and each of the labelled samples. The variance of
the estimator is given by σ2

cond in (15). It can be seen that the
posterior variance σ2

cond is smaller than the prior variance Σ̃t ,
indicating that the labelled examples reduce the uncertainty in
the behaviour of the Gaussian process. The variance of the es-
timator is smaller for test samples which are close to a large
number of labelled samples, increasing the second term in (15),
and therefore decreasing the overall variance. The estimation is
more reliable in regions where the labelled samples are dense,
and becomes more uncertain in sparse regions.

B. Recursive Algorithm

In this section, we develop a recursive version for the estima-
tor in (16). The Gaussian process is adapted by the information
provided by new (streaming) RTF samples, in the test stage.
Any new RTF sample ht can be considered as an additional
unlabelled sample, hence, can be used to update the covariance
terms in (2) and (5). Considering also the new sample, the co-
variance is given by an average of nD + 1 kernel values for
all the training set and the current test sample. Accordingly,
the covariance in (8) for two labelled samples 1 ≤ l, r ≤ nL , is
updated by:

k̃∗(hr ,hl) =
1

M 2

M∑

q ,w=1

(
nD∑

i=1

kq (hq
r ,h

q
i )kw (hw

l ,hw
i )

︸ ︷︷ ︸
training

+ kq (hq
r ,h

q
t )kw (hw

l ,hw
t )

︸ ︷︷ ︸
new test sample

)

= k̃(hr ,hl) +
1

M 2

(
M∑

q=1

kq (hq
r ,h

q
t )

)

×
(

M∑

w=1

kw (hw
l ,hw

t )

)

(17)

where ∗ stands for an updated term. Similarly, for kernels satis-
fying km (hm

i ,hm
j ) = 1 for i = j, the covariance in (8), when

measured between the new test sample ht and a labelled sample
hl , 1 ≤ l ≤ nL , is given by:

k̃∗(ht ,hl) = k̃(ht ,hl) +
1
M

M∑

q=1

kq (h
q
l ,h

q
t ) (18)

According to (17) and (18), the updated forms of the covariance
matrix Σ̃L and of the covariance vector Σ̃Lt , are given by:

Σ̃∗
L = Σ̃L +

1
M 2 kLtkT

Lt

Σ̃∗
Lt = Σ̃Lt +

1
M

kLt (19)

where kLt =
[∑M

q=1 kq (h
q
1 ,h

q
t ), . . . ,

∑M
q=1 kq (hq

nL
,hq

t )
]T

.

Using the Woodbury matrix identity [45] and (19), we obtain

the adaptation rule for ΓL =
(
Σ̃L + σ2InL

)−1
:

Γ∗
L =

(
Γ−1

L +
1

M 2 kLtkT
Lt

)−1

= ΓL − ΓLkLtkT
LtΓL

M 2 + kT
LtΓLkLt

(20)

Hence, the updated weights are p̃∗
L = Γ∗

LpL , and the estimated
position is given by:

p̂t = Σ̃∗T
Lt p̃

∗
L . (21)
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C. Learning the Hyperparameters

The zero-mean Gaussian process model is fully specified by
its covariance function. Thus, the predictions obtained by this
model depend on the chosen covariance function. In practice,
we use a parametric family of functions, i.e. a Gaussian kernel
as in (3) with a scaling-parameter εm . The values of the param-
eters {εm}M

m=1 can be inferred from the data by optimizing the
likelihood function of the labelled samples. From the distribu-
tion defined in (14), the log-likelihood function of the labelled
samples get the form of a multivariate Gaussian distribution,
given by:

L = ln Pr(pL |HL ; Θ) = −1
2
pT

L

(
Σ̃L + σ2InL

)−1
pL

− 1
2

ln
∣
∣
∣Σ̃L + σ2InL

∣
∣
∣ − nL

2
ln(2π), (22)

where Θ denotes the set of model parameters. In (22), the first
term measures how well the parameters fit the given labelled
samples, and the second term reflects the model complexity,
which is evaluated through the determinant of the covariance
matrix. The optimization requires the computation of the gra-
dients of the log-likelihood function with respect to each of the
parameters. The partial derivative with respect to εm can be
generally expressed by (see [40, Ch. 5]):

∂L

∂εm
= −1

2
trace

{

ΓL
∂Σ̃L

∂εm

}

+
1
2
pT

LΓL
∂Σ̃L

∂εm
ΓLpL

=
1
2

trace

{
[
(ΓLpL )(ΓLpL )T − ΓL

] ∂Σ̃L

∂εm

}

(23)

where the partial derivative of Σ̃L in (23) with respect to each
εm , is given by:

M 2 ∂Σ̃L

∂εm
=

∂
(∑M

q,w=1 Kq
LKw

L

)

∂εm

=
∂Km

L

∂εm

(
M∑

q=1

Kq
L

)

+

(
M∑

q=1

Kq
L

)
∂Km

L

∂εm
(24)

where ∂Km
L

∂εw
is an nL × nL matrix with (i, j)th entry given by

‖h i −hj ‖2

ε2
m

exp
{
−‖h i −hj ‖2

εm

}
.

Similarly, we can also estimate the optimal value for the
variance σ2 of the observation noise. The partial derivative with
respect to σ2 has similar form to (23):

∂L

∂σ2 =
1
2

trace
{
(ΓLpL )(ΓLpL )T − ΓL

}
. (25)

Based on (23)–(25), Eq. (22) can be optimized using an efficient
gradient-based optimization algorithm. It should be noted that
the parameter values are optimized through the likelihood of
the labelled set, hence, optimality for the test samples cannot
be guaranteed. This optimization can serve as an initialization
for the parameter values, which may then be fine-tuned by other
prevailing methods, such as cross-validation. A flow diagram of
the entire algorithm is illustrated in Fig. 2.

D. Computational Complexity

In this section we analyse the computational complexity of the
proposed method. The major factors that influence the complex-
ity of the implementation are: the number of training samples
nD = nL + nU , the number of nodes M , the window length N ,
the number of frequency bins D, and the number of time frames
for each measurement T . For simplicity, we equally weight
multiplications, divisions, additions, subtractions and exponen-
tiations. We list the number of operations required for each step
in the algorithm. Note that the operations in training phase are
performed in advance only once, while the operations in the test
phase are performed for each test sample.

Training Phase:
1) RTF estimation: The estimation of each RTF requires

O (
N 2 log2(N)T

)
operations. We estimate the RTF for

each training measurement with respect to each node,
hence the estimation of all the training RTF samples re-
quires O (

N 2 log2(N)TMnD

)
operations.

2) Covariance estimation: The estimation of the position in
the test phase by either (16) or (21), depends on ΓL =
(ΣL + σ2InL

)−1 , which can be computed in advance.
First, we need to evaluate the kernel km (hm

i ,hm
j ) for all

1 ≤ i ≤ nL, 1 ≤ j ≤ nD , 1 ≤ m ≤ M , which requires
O (DMnLnD ) operations. Second, we need to evaluate
the kernel k̃(hi ,hj ) in (8) for all 1 ≤ i, j ≤ nL , which
requires O (

M 2nD n2
L

)
operations. The inversion of the

matrix ΣL + σ2InL
requires O (

n3
L

)
operations.

Hence, the total number of operations in the training phase is
given by:

CMPtr = O
(
N 2 log2(N)TMnD + DMnLnD

+ M 2n2
LnD + n3

L

)
(26)

Test Phase:
1) RTF estimation: The estimation of the test RTFs with

respect to each node requires O (
N 2 log2(N)TM

)

operations.
2) Covariance estimation: In order to compute the co-

variance between the test sample and the labelled
samples ΣLt , we first need to evaluate the kernel
km (hm

i ,hm
t ) for all 1 ≤ i ≤ nD , 1 ≤ m ≤ M , which re-

quires O (DMnD ) operations. Next, we need to evaluate
the kernel k̃(ht ,hi) in (8) for all 1 ≤ i ≤ nL , which re-
quires O (

M 2nLnD

)
operations.

3) Adaptation: The adaptation of ΓL in (20) requiresO (
n2

L

)

operations.
4) Position estimation: The estimation of the position by

either (16) or (21) requires O (
n2

L

)
operations.

Hence, the total number of operations in the test phase is
given by:

CMPts = O
(
N 2 log2(N)TM + DMnD + M 2nLnD + n2

L

)

(27)
It should be noted that in both the training and the

test stages, the complexity is dominated by the RTF esti-
mation, i.e. CMPtr ≈ O (

N 2 log2(N)TMnD

)
and CMPts ≈
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Fig. 2. A flow diagram of the proposed algorithm. The algorithm consists of a training phase (the upper part) and a test phase (the lower part). In the training
phase, we estimate the RTFs for the training set, compute the covariance matrix of the labelled samples, and optimize the model parameters. In the test phase, we
estimate the aRTF for the current sample, compute the covariance between the current sample and the labelled set, update the covariance terms, and estimate the
position.

O (
N 2 log2(N)TM

)
. This part can be replaced if differ-

ent acoustic features are used instead of RTFs. For demon-
stration, let: nL = 36, nU = 100, M = 5, N = 2048, D =
291 T = 150 (corresponding to 5s long signals). Using a Mat-
lab implementation on a standard PC (CPU Intel Core2 Quad
3.7 GHz, RAM 8 GB) the training phase takes on average
67.21 s. The test phase takes on average 0.51 s per a single
test sample of 5 s. For comparison, the SRP-PHAT imple-
mentation [46] on the same PC takes 0.44 s per test sample
of 5 s.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the pro-
posed method for localization of a single source in noisy and
reverberant conditions. We focus on localization in both the x
and the y coordinates of the source position, for a fixed height of
the source. Further discussion on localization in all three coor-
dinates appears in Section VI-C. The performance is evaluated
using both simulated data and real-life recordings. The simula-
tion is used to give a wide comparison of the effect of different
noise and reverberation levels. However, the examination of
real recordings is of great importance, since the simulation may
not faithfully represent the physical phenomena encountered in
real-life scenarios.

A. Simulation Results

We simulated a 5.2 × 6.2 × 3.5 m room with different rever-
beration levels, using an efficient implementation [47] of the im-
age method [48]. Six pairs of microphones were located around
the room. The source positions were confined to a 2 × 2 m
squared region, at 0.5 m distance from one of the room walls.
The training set consisted of nL = 36 labelled samples creat-
ing a grid with a resolution of 40 cm. In addition, there were
nU = 100 unlabelled measurements from unknown locations
in the same region. The room setup and the positions of the
training set are illustrated in Fig. 3. For each position, we simu-
lated a source uttering a WGN signal for the labelled points and
a speech signal for the unlabelled points. The algorithm was
tested on nT = 200 measurements of unknown sources from
unknown locations with unique speech signals. All the mea-
surements were 5 s long, and were contaminated by additive
WGN. For each point, the cross PSD (CPSD) and the PSD were
estimated with Welch’s method with 0.128 s windows and 75%
overlap, and were utilized for estimating the RTF in (30) for
2048 frequency bins. The RTF vector consisted of D = 291
frequency bins corresponding approximately to 100–2400 Hz,
in which most of the speech components are concentrated (for
details please refer to Appendix A).

For the proposed method we used (21) to update the model
according to the current test sample, i.e. for each test point the
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Fig. 3. The simulated room setup. The blue x-marks denote the microphones,
the red asterisks denote the labelled samples and the blue dots denote the
unlabelled samples.

correlation was obtained by an average of nD + 1 points (the
entire training set and the current test point). For comparison, we
also examined the performance of two other algorithms which,
although based on manifold considerations, heuristically fuse
the data from the nodes. Both algorithms rely on the manifold-
based Gaussian process regression described in [34]. The first
approach (“Mean” in the graph) simply averages the estimates
obtained by each single node separately. The second algorithm
(“Kernel-Mult” in the graph) uses a Gaussian process with a
covariance function that is given by the product of the individual
kernels of the single nodes (3). For a Gaussian kernel, using the
product between the kernels of the different nodes is identical
to using the aRTF as an input to the kernel, i.e.

k(hi ,hj ) = k(h1
i ,h

1
j ) · k(h2

i ,h
2
j ) · · · k(hM

i ,hM
j ) (28)

since multiplying the kernels results in the summation of the
squared distances, which equals the distance between the cor-
responding aRTFs. This means that the algorithm regards the
aRTF as a one long feature vector, and is indifferent to the fact
that the measurements are aggregated by different nodes. In con-
trast, the proposed method individually refers to each node and
its associated RTF. As a baseline, we also compared the results
with a modified version of the SRP-PHAT algorithm [46]. Note
that, opposed to the learning-based methods, the SRP-PHAT
algorithm requires the knowledge of the exact microphone
positions.

The root mean square errors (RMSEs) attained by all four
algorithms are compared in two scenarios. In the first scenario,
various reverberation levels are examined while the signal to
noise ratio (SNR) is set to 25 dB in both the training and the
test phases. In the second scenario, the SNR is varying while
the reverberation time is set to 700 ms. In the second scenario,
the training set is generated with a fixed SNR of 20 dB. All the
results are summarised in Fig. 4.

It can be observed that the reverberation level has a direct
influence on the performance, and all four algorithms exhibit
degraded performance as reverberation increases. Regarding

Fig. 4. The RMSE (a) for various reverberation times (SNR is set to 25 dB) and
(b) for various noise levels (reverberation time is set to 700 ms). The proposed
method (“MMGP”) is compared with two other training-based approaches based
on [34] (“Mean” and “Kernel-Mult”) and to the SRP-PHAT algorithm [46].

noise, it can be seen that the SNR level does not have a clear
impact on the performance. From the comparison between the
algorithms it is indicated that the proposed method outperforms
the other learning-based algorithms and obtains a significantly
smaller error. The SRP-PHAT has comparable results for low re-
verberation levels, yet it is inferior for high reverberation levels.
In addition, the proposed method obtains a smaller error com-
pared to the SRP-PHAT for all noise levels, in high reverberation
conditions.

We also examined the algorithm performance in several non-
trivial test cases, to better understand its performance and to
quantify its robustness. We do not present the results for the
other training-based approaches, which were shown to be in-
ferior to the proposed method. However, we present also the
results of the SRP-PHAT algorithm, when the comparison to
the proposed method is meaningful. First, we examined the
reliance upon the direct path information compared with the
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Fig. 5. The RMSE received for various reflection orders of the AIR, for
reverberation time set to 700 ms. For the proposed method the training was
performed with AIRs with maximum reflection order.

reverberant information. The training set was generated using
full AIRs, which consist of reflections of all orders, at a fixed
reverberation level of 700 ms. We examined the error obtained
in the test phase for various reflection orders of the AIRs, at the
same reverberation level. Fig. 5 depicts the RMSE as a function
of the reflection order for the proposed method and for the SRP-
PHAT algorithm. It can be observed that the errors obtained
by the two algorithms represent two opposite trends. The SRP-
PHAT algorithm relies on the direct-path information, hence,
its performance degrades as the reflection order increases. Con-
versely, the proposed method relies on the full reflection pattern
captured by the receptive RTF, hence, it performs better in high
reflection order.

Moreover, we examined a scenario in which the test positions
are outside the specified training region. In Fig. 6, we present
two cases of a slight deviation from the designated region of up
to 0.1 m, and a large deviation from the designated region of
up to 1 m. Fig. 6(a) and (c) depict the test positions for each
case, and Fig. 6(b) and (d) depict the true y coordinate and
the estimated y coordinate for each case. We observe that the
estimated position is limited to the designated region, and that
in the case of deviation, the estimated position is close to either
of the borders of the region. We conclude that the algorithm
does not perform extrapolation, however it does make coherent
decisions within the defined region.

In addition, we examined the influence of changes in the
microphone positions and orientations. The first change was
a movement of the nodes after training. In the test phase we
randomly shifted the microphones in each node in both the
x and the y coordinates. For each node, each coordinate was
shifted by an independent random Gaussian variable with vari-
ance σ2

x or σ2
y . The RMSE obtained for each total shifting vari-

ance σ2
xy ≡ σ2

x + σ2
y is depicted in Fig. 7(a). The second change

regarded the orientation of the microphones. In all other simu-
lations, the microphones were assumed to be omnidirectional,

whereas in this simulation we used microphones with cardioid
directivity pattern. In both the training and the test phases the
microphones were uniformly oriented between zero degrees and
a certain maximum orientation angle. The RMSE obtained for
each maximum orientation angle is depicted in Fig. 7(b). It can
be seen that both the proposed method and the SRP-PHAT algo-
rithm are influenced by changes in the microphone positions and
orientations. The influence of these changes on both methods is
comparable, and the proposed method maintains the advantage
over the SRP-PHAT algorithm.

B. Real Recordings

The algorithm performance was also tested using real record-
ings carried out in the speech and acoustic lab of Bar-Ilan
University. This is a 6 × 6 × 2.4 m room controllable rever-
beration time, utilizing 60 interchangeable panels covering the
room facets. The measurement equipment consists of an RME
Hammerfall HDSPe MADI sound-card and an Andiamo.mc
(for Microphone pre-amplification and digitization (A/D)). As
sources we used Fostex 6301BX loudspeakers, which have a
rather flat response in the frequency range 80 Hz–13 kHz. The
signals were measured by 6 AKG type CK-32 omnidirectional
microphones, which were placed in pairs with internal distance
of 0.2 m. The reverberation level was set to T60 = 620 ms,
which was determined by changing the panels configuration.
An illustration of the room layout is depicted in Fig. 8(a), and a
photograph of the room and the experimental setup is presented
in Fig. 8(b).

The source position was confined to a 2.8 × 2.1 m area located
near the room entrance. In this region, we generated nL = 20
equally-spaced labelled samples with resolution of 0.7 m. Ad-
ditional nU = 50 unlabelled measurements, were generated in
this region in random positions. The algorithm performance
was examined on 25 test samples also generated in random po-
sitions, in the defined region. For generating the labelled sam-
ples a chirp signal was used, while for generating both the
unlabelled samples and the test samples we used 75 different
speech signals of both males and females drawn from the TIMIT
database. All the measurements were 10 s long, and were carried
out with a sampling frequency of 48 kHz and a resolution of
24-bits. The measured signals were then downsampled to 16 kHz
to reflect the frequency content of the TIMIT signals. The RTF
estimation was performed similarly to the way it was defined in
the simulation part.

We examine two different types of noise sources: air-
conditioner noise and babble noise, which is simultaneously
played from 3 loudspeakers located in the room. The RMSEs
obtained for different SNR levels, when the reverberation is fixed
to T60 = 620 ms, are depicted in Fig. 9(a). We observe that the
proposed algorithm outperforms the other methods, and obtains
a smaller error for both noise types. It can also be observed that
the results obtained based on the lab recordings exhibit the same
trends as the results based on the simulated data.

We also applied the recursive adaptation process presented
in Section V-B. The positions of the 25 test samples were esti-
mated sequentially, where in each time step, the current sample
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Fig. 6. The test positions for deviations of up to (a) 0.1 m and (c) 1 m (the blue x-marks denote the microphones, the red asterisks denote the labelled samples,
the blue dots denote the unlabelled samples, and the green dots denote the test samples). The true and the estimated y-coordinate for deviations of up to (b) 0.1 m
and (d) 1 m. Reverberation time is set to 400 ms.

was treated as an additional unlabelled sample, and was used to
update the covariance of the MMGP according to (20) and (21).
The samples in the test set were initially ordered according to
their physical adjacency, so that neighbouring samples were
added in a sequential manner. We used the same set of sam-
ples, and repeated the sequential adaptation, when applied to
different orders of the samples in the set, by mixing the order
of neighbouring samples. In addition, we averaged the error for
sets of 5 consecutive time steps. Both averages are essential for
the sake of generality to ensure that the results are neither tai-
lored to a specific ordering of the samples in the set, nor reflect
the quality of a particular sample. Fig. 10 depicts the average
RMSE. We observe a monotonic decrease in the error as more
samples are added to the computation of the covariance function
in a recursive manner. These results also emphasize the impor-
tance of the semi-supervised approach, i.e. the significant role
that unlabelled samples have in the estimation process.

Another examination was carried out to inspect the effective-
ness of the parameter optimization through the ML criterion of
the labelled samples, as presented in Section V-C. In Fig. 11,

we present the error of the estimated test positions obtained for
different values of ε1 in the range between 100–1000, while
the other parameters remain fixed. It can be observed that the
optimal value is around 500. For comparison, we followed the
proposed optimization using gradient decent starting from an
initial value of 100. We obtain that the optimal value for ε1 is
514, which resembles the empirical value that optimized the
performance on the test samples as implied by Fig. 11. This
indicates that the parameter values, obtained through an opti-
mization over the labelled samples, yields, in practice, plausible
results for estimating the unknown positions of the test samples.

Finally, we investigated the effect of changes in the envi-
ronmental conditions between the training and the test stages.
Training-based approaches are often criticized for being im-
practical, since identical conditions in both the training and
the test phases cannot be guaranteed (e.g. door and windows
may be opened or closed, people may move in the room etc.).
We examined two types of changes: the door of the room
changed from closed (during training) to open (during test) and
slight changes in the panel configuration (decreasing the room
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Fig. 7. The RMSE received for (a) node movements during test phase and
for (b) microphones with cardioid pattern with different randomization of the
orientation level. Reverberation time is set to 400 ms.

reverberation time by about 5%). We repeated the measurements
of 20 test samples in both scenarios (the training samples are
left unchanged), and compared the results obtained under these
conditions to the nominal results, where there is no change in the
environmental conditions between the training set and the test
set. This comparison is summarized in Table II, which presents
the RMSEs in all the defined scenarios. It can be seen that ei-
ther opening the door or changing the panel configuration does
not have a significant impact on the localization results of the
proposed method, which indicates that the algorithm is robust
to slight changes that are likely to occur in practical scenarios.
Note that the results of the SRP-PHAT algorithm are slightly
improved under these changes due to the reduction in the rever-
beration level.

C. Discussion

In this section we discuss several practical aspects of the
proposed method. We first discuss the implementation of the
method for localization in all three coordinates x, y and z. Ex-
perimental results demonstrate the mapping of the RTFs to the x
and y coordinates of the source position, for a fixed height. Note

Fig. 8. (a) The room layout: the microphone positions are marked by blue
“x” marks, and the positions of the labelled samples are marked by red circles.
(b) A photograph of the room.

Fig. 9. The RMSE for different noise levels with two types of noise signals:
air-conditioner noise and babble noise.

that the RTFs used in the proposed algorithm, consist of reflec-
tions impinging on the array also from non-horizontal directions.
Therefore, a full localization in all directions is feasible. In this
case, one has to perform training in the vertical axis as well,
and to form a 3D training region. An additional variability in
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Fig. 10. Demonstration of the recursive adaptation process: in each step
the current sample is used to update the covariance function of the process.
The results are averaged over groups of five samples.

Fig. 11. The RMSE obtained for different values of the kernel scaling
parameter ε1 .

TABLE II
COMPARISON BETWEEN THE RMSE OBTAINED IN THE CASE WHERE THE

TRAINING AND THE TEST SETS ARE GENERATED EXACTLY WITH THE SAME

CONDITIONS (FIRST COLUMN) AND WHEN THE TEST IS GENERATED UNDER

SOME ENVIRONMENTAL CHANGES: OPEN DOOR (SECOND COLUMN) OR

CHANGES IN THE PANEL CONFIGURATION (THIRD COLUMN)

Nominal Door Panel

MMGP 0.465 0.493 0.506
SRP-PHAT 0.540 0.516 0.531

the z coordinate increases the computational complexity and
may influence the quality of the localization results. Another
possibility is to form a unique training set for each speaker
(and therefore for a fixed height), and circumvent localization
in the z coordinate. To form a speaker-specific training set, one
needs to acquire a small number of labelled samples in advance.

Unlabelled measurements can be collected during run-time, and
can be utilized to update the initial model, using the adaptation
process presented in Section V-B.

A second issue requiring further discussion is the fact that the
estimation of each coordinate is performed separately. Here, we
assume that variations of the RTFs reflect an independent move-
ment of the source in either direction. We use this independence
assumption to simplify the derived mapping. It is important to
note that the same covariance terms are used in (16) or in (21)
for the estimation in either axis, implying a direct connection
between the estimators. The fact that both estimators rely on the
same covariance terms, goes hand in hand with the assumption
that similar RTFs are associated with close positions in both
coordinates. In general, the converse does not hold, namely,
when two RTFs are associated with remote positions, there can
still be proximity in one coordinate and remoteness in the other
coordinate.

Third, it is important to note that the proposed method is
derived for and applied to a localization of a single source. In
the case of multiple sources, the method is applicable when
the RTFs of each of the sources can be estimated separately.
Several works on RTF estimation for multiple sources have
been published recently [49], [50], with applications also to
multi-source localization [51], [52].

VII. CONCLUSION

In this paper, a novel mathematical approach was developed
to fuse the information acquired in a multi-node scenario. This
approach, when applied to source localization in ad hoc net-
works of distributed microphones, deviates from the common
practice in the field since it is devised in a semi-supervised
manner based on a data-driven model rather than on mathe-
matically predefined relationships. A Gaussian process is used
for modelling the unknown relation between the acoustic mea-
surements and the corresponding source positions. The prere-
corded training measurements provide useful information about
the characteristics of the acoustic environment, and are used
to define the covariance of the Gaussian process by averag-
ing over both the different nodes and the different relations
to other available acoustic samples. As for the practical as-
pect, the method produces satisfactory results in challenging
adverse conditions including high reverberation and noise lev-
els, with no need for microphone calibration (the algorithm
is blind to their positions). The experimental results based on
real lab recordings further emphasize the applicability of the
algorithm and its ability to successfully locate the source in in-
volved scenarios with possibly natural variations between the
training and the test phases. Moreover, the gradual improvement
in the performance, as demonstrated in the sequential applica-
tion of the algorithm, verify the relevance of the information
manifested in unlabelled training recordings to the localization
task.

APPENDIX A

We consider the relative impulse response hm (t,q), which
satisfies: am

2 (t,q) = hm (t,q) ∗ am
1 (t,q). The AIR is typically
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very long and complicated since it consists of the direct path
between the source and the relevant microphone, and the var-
ious reflections from the different surfaces and objects in the
enclosure. Thus, the relative impulse response also has a com-
plex high-dimensional nature. However, in a static environment,
where the acoustic conditions and the microphone positions are
fixed, the only parameter that distinguishes between the dif-
ferent AIRs is the source position. For convenience, we work
in the frequency domain, and use the relative transfer function
(RTF) Hm (k,q), which is the Fourier transform of the rela-
tive impulse response hm (t,q), where k is the frequency index.
Accordingly, the mth RTF is given by the ratio between the
two acoustic transfer functions (ATFs) of the two microphones
in the mth pair, i.e. Hm (k,q) = Am

2 (k,q)/Am
1 (k,q), where

Am
i (k,q) is the acoustic transfer function (ATF) of the respec-

tive AIR am
i (t,q). Assuming uncorrelated noise, the mth RTF

can be computed using the PSD and CPSD of the measured
signals and the noise at the mth pair:

Hm (k,q) =
Sm

y2 y1
(k,q)

Sm
y1 y1

(k,q) − Sm
u1 u1

(k)

=
Sss(k)Am

2 (k,q)Am∗
1 (k,q)

Sss(k)|Am
1 (k,q)|2 =

Am
2 (k,q)

Am
1 (k,q)

(29)

where Sm
y2 y1

(k,q) is the CPSD between ym
1 (t) and ym

2 (t),
Sm

y1 y1
(k,q) is the PSD of ym

1 (t), Sm
u1 u1

(k) is the PSD of the
noise um

1 (t) in the first microphone, and Sss(k) is the PSD of
the source s(t). We use a biased estimator of the RTF, neglecting
the noise PSD in the denominator of (29):

Ĥm (k,q) ≡ Ŝm
y2 y1

(k,q)

Ŝm
y1 y1

(k,q)
. (30)

where Ŝm
y2 y1

(k,q) and Ŝm
y1 y1

(k,q) are estimated based on the

measured signals. Let hm (q) = [Ĥm (k1 ,q), . . . , Ĥm (kD ,
q)]T , be a concatenation of RTF estimates of the mth node in D
frequency bins. Due to the symmetry of the Fourier transform
for real valued functions, only the first half of the transform is
considered. In addition, we consider only those frequency bins
where the speech components are most likely to be present,
to avoid poor estimates of (30) in frequencies where the speech
components are absent. For the sake of clarity, the position index
is omitted throughout the paper.
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[14] A. Stéphenne and B. Champagne, “A new cepstral prefiltering technique
for estimating time delay under reverberant conditions,” Signal Process.,
vol. 59, no. 3, pp. 253–266, 1997.

[15] Y. Rui and D. Florencio, “Time delay estimation in the presence of corre-
lated noise and reverberation,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2004, vol. 2, pp. 133–136.

[16] T. Dvorkind and S. Gannot, “Time difference of arrival estimation of
speech source in a noisy and reverberant environment,” Signal Process.,
vol. 85, no. 1, pp. 177–204, Jan. 2005.

[17] J. Scheuing and B. Yang, “Disambiguation of TDOA estimation for mul-
tiple sources in reverberant environments,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 16, no. 8, pp. 1479–1489, Nov. 2008.

[18] J. Benesty, “Adaptive eigenvalue decomposition algorithm for passive
acoustic source localization,” J. Acoust. Soc. Amer., vol. 107, no. 1,
pp. 384–391, 2000.

[19] S. Doclo and M. Moonen, “Robust adaptive time delay estimation
for speaker localization in noisy and reverberant acoustic environ-
ments,” EURASIP J. Appl. Signal Process., vol. 2003, pp. 1110–1124,
2003.

[20] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust localiza-
tion in reverberant rooms,” in Microphone Arrays. New York, NY, USA:
Springer, 2001, pp. 157–180.

[21] A. Deleforge and R. Horaud, “2D sound-source localization on the binau-
ral manifold,” in Proc. IEEE Int. Workshop Mach. Learn. Signal Process.,
Santander, Spain, Sep. 2012, pp. 1–6.

[22] A. Deleforge, F. Forbes, and R. Horaud, “Variational EM for binau-
ral sound-source separation and localization,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2013, pp. 76–80.

[23] A. Deleforge, F. Forbes, and R. Horaud, “Acoustic space learning for
sound-source separation and localization on binaural manifolds,” Int. J.
Neural Syst., vol. 25, no. 1, 2015, Art. no. 1440003.

[24] T. May, S. van de Par, and A. Kohlrausch, “A probabilistic model for
robust localization based on a binaural auditory front-end,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 19, no. 1, pp. 1–13, Jan. 2011.

[25] X. Wu, D. S. Talagala, W. Zhang, and T. D. Abhayapala, “Spatial feature
learning for robust binaural sound source localization using a composite
feature vector,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Shanghai, China, Mar. 2016, pp. 6320–6324.

[26] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng, and H. Li, “A
learning-based approach to direction of arrival estimation in noisy and re-
verberant environments,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2015, pp. 76–80.

[27] X. Xiao, S. Zhao, T. N. T. Nguyen, D. L. Jones, E. S. Chng, and H. Li, “An
expectation-maximization eigenvector clustering approach to direction of
arrival estimation of multiple speech sources,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2016, pp. 6330–6334.



LAUFER-GOLDSHTEIN et al.: SEMI-SUPERVISED SOURCE LOCALIZATION ON MULTIPLE MANIFOLDS 1491
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