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Abstract—The problem of speaker tracking in noisy and re-
verberant enclosures is addressed in this paper. We present a hy-
brid algorithm, combining traditional tracking schemes with a new
learning-based approach. A state-space representation, consisting
of a propagation and observation models, is learned from signals
measured by several distributed microphone pairs. The proposed
representation is based on two data modalities corresponding to
high-dimensional acoustic features representing the full reverber-
ant acoustic channels as well as low-dimensional time difference
of arrival (TDOA) estimates. The state-space representation is ac-
companied by a statistical model based on a Gaussian process used
to relate the variations of the acoustic channels to the physical
variations of the associated source positions, thereby forming a
data-driven propagation model for the source movement. In the
observation model, the source positions are nonlinearly mapped
to the associated TDOA readings. The obtained propagation and
observation models establish the basis for employing an extended
Kalman filter. The simulation results demonstrate the robustness
of the proposed method in noisy and reverberant conditions.

Index Terms—Speaker tracking, time difference of arrival
(TDOA), relative transfer function (RTF), extended Kalman filter
(EKF), Gaussian process.

1. INTRODUCTION

PEAKER localization and tracking in reverberant enclo-
S sures is required in various audio applications, including:
automatic camera steering in teleconferencing [1], beamform-
ing [2], source separation [3], [4] and robot audition [5], [6].
Conventional localization methods are implemented by either
a single-step optimization directly on the measured signals, or
a dual-step approach. In the first category, the position is esti-
mated for example, by a grid search over the output power of a
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beamformer steered to all potential locations [7], [8], or by high-
resolution methods such as the multiple signal classification
(MUSIC) algorithm [9]. In dual-step approaches, the first stage
is estimating the TDOAs of several microphone pairs [10]-[12].
Then, in the second stage, the TDOA readings are combined to
perform the actual localization [13], [14].

In a tracking scenario, the source is moving in the enclosure
in approximately continuous trajectory, implying dependence
between source positions in successive time steps. Bayesian in-
ference approaches, which model the varying source position
as a stochastic process, are widely used. These methods com-
monly rely on estimated TDOAs, leading to nonlinear and non-
Gaussian models, which can be solved, for example, using the
unscented Kalman filter, the extended Kalman filter (EKF) [15],
and particle filters [16]-[18].

In real environments, the presence of noise or reverberations
often yields unreliable observations with spurious peaks, which
may lead to severe performance degradation. Several attempts
to mitigate the harmful effect of noise and reverberations, were
made. In [19] an extended particle filter (EPF) solution was
proposed, where an extended Kalman filter (EKF) is used to
derive an optimal importance function for a particle filter. A
multiple-hypothesis model accounting for the multipath nature
of the sound propagation in reverberant enclosures was pre-
sented in [16], and was combined with an EPF in [20]. In [21],
[22] a tracker was proposed based on a probability hypothesis
density (PHD) filter, which is a first moment approximation of
the target probability density. Robust tracking methods were also
proposed using sensor networks with special structures, such as
spherical microphone arrays [23] and distributed networks [24],
[25]. In [26] a robust tracker based on a distributed unscented
Kalman filter was proposed, in which an interacting multiple
model [27] is used for accommodating the different possible
motion dynamics of the speaker, yielding a smoothed trajectory
of the speaker’s movement in noisy and reverberant environ-
ments. Another approach to enhance the localization robustness
is to fuse several observation modalities, as was demonstrated
in audio-visual tracking methods [28]-[31].

Localization and tracking capabilities can be enhanced us-
ing model-based methods, assuming certain structures of either
the speech signal or the acoustic channels. In [32] an autore-
gressive (AR) modelling for the speech components was used,
and in [33], [34] the sources were modelled as sums of har-
monically related sinusoids, which can describe many musical
instruments and voiced speech. A model for the early reflections
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of the acoustic channels was presented in [35], based of which
the early reflections were iteratively estimated. These models of-
ten rely on approximated physical and statistical assumptions,
which do not always meet the practical conditions in complex
real-world scenarios, with high levels of noise and reverbera-
tions. Recently, there is an attempt to overcome these limitations
by applying data-driven models, rather than predefined physi-
cal and statistical models [36]-[40]. In this family of methods,
the central idea is to learn a mapping from high-dimensional
acoustic features, extracted from the measured signals, to cor-
responding source positions.

Recently, we have presented several localization approaches
based on the concepts of manifold learning. These algorithms
are based on learning the mapping between the high dimen-
sional acoustic channels to the source positions. In [40], we pre-
sented a semi-supervised source localization algorithm based on
two-microphone measurements using the concept of manifold
regularization in a reproducing kernel Hilbert space (RKHS).
A Bayesian formulation to the localization algorithm, which
is analogous to the manifold regularization approach, was pre-
sented in [41]. This Bayesian framework served as a corner stone
for extending the single node (microphone pair) setup to an ad
hoc network of microphone pairs, in [42]. In [43], we extended
the static localization approach to tracking a moving source. The
gist of the algorithm is to combine between a local interpolation
of successive time steps, and a global interpolation of available
prerecorded measurements. All the above methods are based
on data-driven models and lead to improved localization re-
sults over TDOA-based approaches in adverse conditions [40],
[44]. However, TDOA-based approaches may be superior in
low reverberation and noise levels, since the TDOA readings
are typically reliable under these conditions. Motivated by this
observation, we propose here a hybrid tracking algorithm, which
combines learning-based models with a traditional TDOA-based
approach.

In this paper, we incorporate two data modalities, which are
both extracted from the measured microphone signals. The first
modality is the estimated TDOA, which ignores the complex
reflection pattern characterizing the acoustic environment, and
has an analytic known relation to the source position. The sec-
ond modality comprises the full representation of the acoustic
channel, which is high dimensional and has an unknown com-
plex relation to the source position. As in [40], the relation
between the acoustic channels and the source positions can
be recovered by a data-driven model, built from a training set
of prerecorded measurements in the enclosure of interest. We
present a hybrid state-space formulation, which exploits both
data modalities. The propagation of the source is expressed by a
data-driven model, and translates the relations between the high-
dimensional acoustic channels into a linear transition model for
the source movement. The observation model is TDOA-based,
and combines estimated TDOAs extracted from the measured
signals and known TDOAs associated with the training set. The
resulting state-space model lays the foundation for the appli-
cation of an EKF. The algorithm performance is examined on
simulated trajectories of a moving source in noisy and reverber-
ant environments.

II. PROBLEM FORMULATION

Consider a source moving in a reverberant enclosure. We as-
sume that the movement of the source can be generally described
by the following Markovian relation:

p(t) =a(p(t—1),%) (1)

where p(t) = [p,(t), py (£), p- (t)]" is the position of the source
at time ¢. Here, a(-) is the transition function, and Z; rep-
resents all the relevant information available at time ¢, such
as prior information of the acoustic environment, the driving
variance, etc. Traditional tracking methods usually rely on a
completely heuristic propagation model, e.g., random walk or
Langevin [16], [17]. Conversely, here instead of assuming a
generic prior, we aim to infer a data-driven propagation model
based on observations and a training set of prerecorded mea-
surements. We assume that the training set consists of D mea-
surements of static sources in known positions {p; }*; in the
enclosure of interest.

The estimation of the source position is based on audio signals
generated by the source and measured by a set of microphones
located in the enclosure. We consider a setup with M nodes, each
of which consists of a pair of microphones, arbitrarily positioned
in the enclosure. The source generates a speech signal s(t),
which is measured by all the microphones. The signal ™/ ()
measured by the jth microphone, j € {1, 2}, of the mth node,
M e{1,...,M},is given by:

ymj (t) = Z b;nj (r)s(t —7) + u™I (t) 2)

T

where b}/ is the time-varying acoustic impulse response (AIR)

relating the source at position p(¢) and the jth microphone in
the mth node, and u™/(t) is the corresponding noise signal.
Both the measured signals (2) and the training information can
be exploited for estimating the source positions. For this pur-
pose, in Section III, we define the propagation model (1), i.e.,
we specify the transition function a(-), and define the relevant
information Z;, utilized at each time step. In Section IV, we
define the relevant features, which are treated as noisy observa-
tions, and formulate the corresponding observation model. The
two models form a state-space representation of the tracking
problem, which is solved using an EKF recursion, as described
in Section V.

III. MANIFOLD-BASED PROPAGATION MODEL

The relevant information in the task of source localization is
reflected in the measured signals (2) through the corresponding
acoustic channels b;"/, and is independent of the source sig-
nal. We claim that observed changes of the acoustic channels
during the movement of the source has a direct relation to the
corresponding changes in the source position. Therefore, the
propagation model of the source can be inferred from the varia-
tions of the corresponding acoustic channels. However, there is
no simple model that relates the acoustic channels to the source
positions. In order to relate between the two, we resort to data-
driven models, which are learned based on training information.
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We first analyse the characteristic of the acoustic channels and
their relation to the source positions. Then, we extract acous-
tic feature vectors, representing the acoustic channels, from the
measured signals (2). Next, we derive a data-driven model at-
taching each feature vector to the corresponding source position.
Finally, we learn the dynamics of the movement of the source
from variations in the acoustic features during the movement.

A. The Acoustic Manifold

Consider a specific reverberant enclosure, such as a confer-
ence hall, an office, or a car interior. All possible acoustic chan-
nels in this enclosure have a complex reflection pattern stem-
ming from the different surfaces and objects characterizing the
enclosure. Hence, the acoustic channels are typically modelled
by a large number of coefficients, resulting in an intricate high-
dimensional representation. However, in a static environment,
where the enclosure characteristics and the microphone posi-
tions are approximately fixed, the difference between acoustic
channels is mainly attributed to the different positions of the
source [44], [45]. Thus, the true intrinsic dimension of the set of
possible acoustic channels in a specific enclosure is significantly
smaller than the number of variables commonly used for their
representation. By virtue of this assumption, we can state that
the acoustic channels in a specific enclosure pertain to a low di-
mensional manifold [40], [46]. The structure of the manifold is
unknown, and can be inferred from the training information. The
available training measurements in a specific enclosure can be
considered as samples drawn from the manifold. By analysing
the relations between the given training samples, we can form a
data-driven model that represents the structure of the manifold.

In the test phase, we obtain a series of varying acoustic chan-
nels during the source movement. This series of acoustic chan-
nels can be viewed as a trajectory on the learned manifold. The
trajectory on the manifold corresponds to the actual trajectory
of the source in the enclosure. Our goal is to relate the ob-
served variations in the domain of the acoustic channels to the
unknown dynamics of the source movement, aiming to devise a
data-driven propagation model.

B. Acoustic Feature Vectors

We would like to establish the relation between the acoustic
channels and the source positions. In practice, only the mea-
sured signals are available, and the acoustic channels cannot
be directly accessed. Therefore, we use the associated relative
transfer function (RTF) H™ (¢, k), defined as the ratio between
the two transfer functions of the two microphones within the
mth node, i.e.,

_ B™(tk)

H™(t, k) = B k)

3)
where B™J (¢, k) is the (unknown) transfer function of the corre-
sponding AIR. Note that here and henceforth ¢ is used to denote a
frame index in the short-time Fourier transform (STFT) domain,
and k is a frequency bin. The RTF value in the kth frequency bin
is estimated in the time-frequency domain using L + 1 frames

around ¢, and is smoothed across time:

x I+ L /2 m m1x*
Frm (t ]f) ~ énl (tu k) _ Z;J;fiL/QY 2(n7k)Y ! (TL, k)
0 ’ @Tl (t, k) Zfziltlézl‘/Q yml (n7 k)le*(n, k)
4)

H™ (t,k) = vH{" (t, k) + (1 =) H" (t = 1, k) ©)

where 7' (¢, k) and ®Y, (, k) are the estimated power spectral
density (PSD) and cross-PSD (CPSD) of the measured signals at
the mth node, Y™/ (¢, k) is the STFT of the measured signal (2),
and 0 < <1 is a smoothing parameter. Let h(¢) denote the
concatenation of RTF values in K frequency bins and in all M
nodes:

. . T
W (t) = [H (t, k), ... H™ (1, kK)}

h(t) = [0'7(8),...,0M T (1)]" (6)

where h™ (t) resides on the mth manifold M,, C R, and
h(t) € UM_, M,,. Note that each node is associated with a spe-
cific manifold M,,,, which represents the underlying geometric
structure of the RTFs associated with the mth node. The different
nodes are assumed to be spatially distributed in the enclosure.
Therefore, they represent different views, and, in general, their
associated manifolds have different structures. To recover the
mapping between RTFs and source positions, we combine the
different relations defined by the different manifolds. Merging
the information from the different manifolds increases the spa-
tial separation and improves the ability to accurately localize
the source [42].

C. Mapping the Acoustic Features to Source Positions

We define the mapping function f. : UM_, M,, — R which
attaches to an RTF sample h(¢) its corresponding source posi-
tion, i.e., p.(t) = f.(h(t)), ¢ € {x,y, z}. The function f.(-) is
modelled as a zero-mean Gaussian process [47], specified by its

covariance function x : UM_, M,, x UM_, M,, — R:

fo() ~ GP(0, k). (7

The covariance function x(h(t),h(7)), often termed “kernel
function,” translates a pairwise relation between the RTFs h(t)
and h(7) to a pairwise similarity between the corresponding po-
sitions p, (t) and p. (7). However, a covariance function which
is based on the standard Euclidean distance between the high-
dimensional RTFs, i.e., ||h(t) — h(7)]|2, reflects the physical
distance only for small scales [46]. Therefore, we define a
manifold-based covariance function, in which the relation be-
tween two RTFs is evaluated with respect to the manifolds of
the different nodes. For this purpose, we utilize the training
information.

Recall that we assume the availability of D measurements
of static sources in D different locations {p; }2 ;. We estimate
the RTFs {h; zD:v defined as in (6), for each training position.
Since during training the sources are static, we estimate the
RTFs according to (4) using all the associated frames, without
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time smoothing. The training sources are assumed to be static,
since it is simpler to acquire measurements in known positions
for static sources. In addition, their corresponding RTFs can
be more accurately estimated, since the estimation can utilize
a higher number of frames, in contrast to a moving source for
which the acoustic channels vary from frame to frame. For
notational clarification, we emphasize that h; is a training RTF
sample of a static source from a known position p;, whereas
h(t) is a test RTF sample of a moving source from an unknown
position p(t).

The relations on the mth manifold are evaluated using a stan-
dard Gaussian kernel, with a scaling factor ¢, :

I w3

£ m

Rm (hgn ) h;'”) = exp (8)

Note that the Gaussian kernel implicitly limits the Euclidean
distance to a small range governed by ¢, . As aresult, it respects
the linearity of the manifold for small scales. We propose to
measure the relations in each manifold separately using (8), and
then combine the different perspectives of the different nodes.
The purpose is to form a similarity measure between RTFs,
which represents relations that are co-observed in all manifolds.
By relying on the training samples {h;}” |, we construct a
multiple-manifold covariance function [42]:

M D
1 ,
Alhy ) = 575 D0 3 kg(hE bk, (B, BE). )

qg,w=11i=1

where [ and r represent ascription to certain positions, whereas
q and w represent ascription to certain nodes. Note that (9)
can be used to evaluate the covariance of both training and
test samples. The covariance of test samples of different time
frames is expressed by « (h(t), h(7)), and the covariance of a
test sample and a training sample is expressed by x(h(¢), h;).

In (9), the covariance is obtained by averaging over all
available training samples as well as over all different nodes.
Comparing the relations to other training samples yields an
affinity measure, which respects the manifold structure, hence
is preferable over a regular Euclidean distance between the
high-dimensional RTFs. Two RTF samples which exhibit sim-
ilar relations to other samples on the manifold are considered
close to each other, indicating that the corresponding source
positions are also in close proximity, and vice versa. In addition,
we average over the relations inspected in the various nodes to
fuse their different views. The defined covariance consists of
all the inter-relations between the different nodes, enhancing
observations which are common to pairs of nodes, and ignoring
relations that appear in only one node. Further details about the
derivation of (9) can be found in [42]. A nomenclature listing
the different symbols and their meanings is given in Table I.

It is important to note that in the following derivation of the
tracking algorithm, we regard the mapping function f.(-) as a
Gaussian process with a covariance function «(-,-) as stated
in (7), with no restriction to a specific kernel function (-, -).
In the experimental study in Section VI, we use the kernel

TABLE I
NOMENCLATURE

h; A training RTF sample, consisting of RTFs of all M nodes,
associated with a static source at position p;, 1 <¢ < D

A test RTF sample, consisting of RTFs of all M nodes,
associated with a moving source at an instantaneous position
p(t)

A Gaussian process representing possible source positions,
mapped from their corresponding RTFs

A kernel function defining the covariance

of positions drawn from the Gaussian process,

evaluated via the relation between the corresponding RTFs

M, The manifold associated with the RTFs of the mth node

defined in (9). However, other definitions for the covariance of
the Gaussian process can be applied as well.

D. Derivation of the Propagation Model

After defining the instantaneous relation between RTFs and
source positions via the function f. (-), we can now define the pa-
rameters of the propagation model for the source movement (1).
In this model, the current source position p(t) is a combina-
tion of the previous source position p(t — 1) and of relevant
training positions in proximity to the source. The relations be-
tween successive positions and the chosen training positions
are determined according to the relations between the observed
RTF samples, formed by the manifold-based covariance terms
defined in the previous section (9).

Following [48], for each test RTF sample h(t) we define a
subset of neighboring training samples {hy, | || h(t) — h;, [|<
n, t; € {1,...,D}}, where ) defines the neighborhood radius.
In order to obtain fixed-size sets, we focus on NN nearest-
neighbors among the defined subset (assuming 7 is large enough
to include N samples), denoted by H; = {h;, }}¥ . In this def-
inition, the neighbors are determined based on the Euclidean
distance between the corresponding RTFs. Other similarity mea-
sures can be used for this purpose, such as relying on the distance
induced by the covariance in (9). Note that here, the exact ex-
tent of similarity is of secondary importance. We only need to
identify nearby samples, hence, the Euclidean distance, which
is meaningful for small scales, is appropriate for this task.

Let H; = h(t)|UH; denote an extended set of size N +
1, which consists of the current RTF sample as well as
all the chosen neighboring training samples. Let f; . =
[fe(h(t)), fe(he )y oy fo(hyy, )]T denote a concatenation of all
the corresponding mappings of the function f,(-) over the sam-
ples in H;, representing their source positions. The relation be-
tween the mappings of the ¢-th and the ¢ — 1-th sets is dictated
by the Gaussian process (7). Both f; . and f;_; . are Gaussian
vectors, which consist of samples from the Gaussian process
fe(+). Therefore, they have a joint Gaussian distribution with
zero-mean and covariance matrix, which is based on the covari-
ance terms in (9):

£, e e
£ oo, 221
, (10)
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where H; ;1 = Hi UH;1,0p(n 41y isan2(N + 1) x 1 vector
of all zeros, and

#(h(t),h(r)) k(h(t) hy,) #(h(t), hr )

’%<h1‘r1 7h(7)) K;(htl ) th ) H(htl ) hTAV )
- = : : :
ﬁ(ht;\" ) h(T)) K(htw ’ th ) K(htx ’ hTAV )
(11)

Accordingly, the conditional distribution of f; . given f;_; . is
also Gaussian:

Pr(f clfi—1.c, Hii—1) = N(AHp—1)fi—10, Q(Hii-1))
(12)
where

A(Hi 1) =041 Et_}l,tfl

Q(Hii—1) = Bt — Bte—1 E;_lljt_l 22,5,1 . (13)

Conveniently, the Gaussian conditional distribution induces lin-
ear dependence between the positions of the current set f; . and
the positions of the preceding set f; _; .. Thus, the propagation of
the source positions in (1) can be formulated by a linear equation
of successive time steps, with a Gaussian driving noise:

fio =AM )1 +EHiim1) (14)

where the noise characteristics are directly inferred
from the conditional probability (12), ie., &(Hit-1) ~
N (Oy+1,Q(Hii—1)). Here, we extend the commonly used
random walk model [20], by interpolating over both the previ-
ous position and close positions from the training set. The model
parameters, i.e., the state-transition matrix and the variance of
the process noise, are computed using Z; = ‘H; ;_1, based on the
relations between the corresponding RTFs with respect to the
different manifolds. This way a nonlinear regression in the high-
dimensional space of the RTFs results in a linear (time-varying)
propagation model for the source movement.

The model applies to each of the coordinates, =,y or z, in-
dependently. Here, we assume that the variations of the RTFs
reflect an independent movement of the source in either di-
rection. We use this independence assumption to simplify the
derived Gaussian process mapping. However, the observation
model presented in Section IV, which accounts on TDOA read-
ings, uses the full 3D location as required by the physical model.
Consequently, the full propagation model for the 3-D position

£, = [fﬂv, ftfy,ftTZ]T is given by:
£, =As (M1 )fio1 +&5(Hiin) (15)
where  Agz(Hii1) =A(Hii1) @Iz and  &5(Hip1) ~

N (03(N+1);Q3 (Ht.tfl)) with Q3(Hii-1) = Q(Hii-1) ®
I3. Here, ® is the Kronecker product and I3 is the 3 x 3 identity
matrix.

IV. TDOA-BASED OBSERVATION MODEL

The observations are formed by the range differences r =

M ]

[rl R & T of each of the nodes. The range differences have

a known nonlinear relation to the source position:

m

=g =lp-a”, - llp-a", @6

where ™/ is the position of the jth microphone in the mth node
(assumed to be known). The range differences attached with the
current time step, can be estimated using the generalized cross-
correlation (GCC) method [10], or they can be extracted from
the estimated RTFs [49]:

P (t) = % argmax h™ (t,7) = IDFT {ﬁm (t, k)} (17)

where v is the sound velocity. For the subset H; of the cho-
sen neighbors, the range differences {#;, }:*; can be computed
by (16), using the corresponding measured positions {p;, }2 ;.
Let &, = [#7(t),8] ,... 2] | " be the concatenation of
M (N + 1) values/estimates of the range differences associated
with the set H;. A nonlinear observation model is formed by:

r, =g(f) + ¢ (18)
where g(f;) = [g” (p(?)),g” (pt,),---,g" (pty)]? and
[p—d[, = [[p—a"|,
g(p) = : (19)
[p—a"?[l, = [lp — o],

Here, ¢, ~ N (OM(NH),R,E) is the observation error, with a
diagonal covariance matrix R;:

R, = blkdiag {R(¢),R;,,.... Ry, } (20)

where R(¢) and Ry, are the covariance matrices of the obser-
vation noise associated with the current sample and with the ith
sample in H;, respectively:

R(t) = diag {(0})?, ..., (0}")*}
Ry, = diag{(o}i)Q,...,(oif[)Q}.

Typically, (0’;7)2 < (o)? for all 1< m < M,1<i<N,
since 7} is computed in (16) using the corresponding measured
position p;,, while 7 (t) is estimated by (17). In addition, the
variance (o}")? is influenced by reverberation and noise lev-
els, as well as by the microphone positions with respect to the
speaker. Conversely, the variance (0;7)2 is independent of the
acoustic conditions, reflecting the reliability of the measured
training positions.

21

V. EXTENDED KALMAN FILTER TRACKING

A state-space representation is formed by combining the
propagation model with the observation model. In our case,
we combine the manifold-based propagation model (15), which
is derived based on the RTFs, and the TDOA-based observation
model (18), which relies on the TDOA readings. Both mod-
els take advantage of the training information. Further discus-
sion about this combination, as a special case of a more gen-
eral scheme, is given at the end of this section. We obtain the
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following state-space representation:
£, = As(Hy -1 )fio1 +&5(Hiin)
r,=g(f) + ¢

Due to the nonlinearity of the observation model a nonlinear
Bayesian filtering technique should be applied. The particle
filter [50], which is based on random sampling, cannot be di-
rectly applied here, since the evaluation of the covariance terms
in (22) is based on the corresponding RTFs, which are given only
for the pre-generated training samples, and are unavailable for
other random samples. Either the unscented Kalman filter [51]
or the extended Kalman filter (EKF) may be applied. In [15], the
trackers based on these two nonlinear filters were shown to yield
comparable results, hence we adopt here the EKF recursion due
to its simplicity.

The EKF algorithm applies a linearization of the observation
model (which is given here in a closed-form, in contrast to the
inferred propagation model), using the following Jacobian:

(22)

veg(f;) = blkdiag{ v, g(p(t)), Vp&(Pt, ) ---» Vp&(Pry )}
(23)
where
p-q'* _ _p-q'! g
(prq“ [z lp—a'tl} )
Vpg(P) = : (24)
M2 M1 T
pP—q _ _p—q
<Hp*q“” ll2 [p—a™ 1. )

Accordingly, the EKF recursion takes the following form:
f(tlt —1) = Agf(t =1t — 1)
TI(t]t — 1) = Ay TI(E — 1t = 1) Ay, + Qs

£(t]t) = £(t]t — 1) + T(¢) (fq —g (f(t\t - 1)))
H(t]t) = (Tyv 1) — T()Gy) TI(t[t — 1) (25)

where Az, = As; (Hii-1), Qs = Q¢ (He—1). Here, II(¢]t —
1) is the predicted covariance, II(¢|¢) is the posteriori covari-
ance, and I'(¢) is the Kalman gain, defined as:

T(t) = T(t|t — 1)GT (G, II(t]t — 1)GT +R,) . (26)
where G; = Vg (f' (t]t — 1)). The proposed tracking scheme
is summarized in Algorithm 1.

The resulting estimator f(¢|t) is a combination of a
predicted position f(¢[t —1), and a correction term I'()
(r+ — g(f(t|t — 1))). The predicted position is constructed by a
local interpolation of the previous position and adjacent training
positions, using manifold-based models. The correction term
is devised from the observed range differences. Note that the
proposed hybrid estimator consists of two estimates based on
two data modalities with different characteristics, namely the
RTFs and the TDOAs. On the one hand, the TDOAs repre-
sent low-dimensional observations with known relation to the
source positions. The TDOA readings suffer from two major
disadvantages. First, the TDOA estimation based on the mea-
sured signals may be unreliable and its accuracy degrades as

Algorithm 1: Hybrid Tracking.
Input :
* A training set consisting of D RTF samples {h;} | of
static sources located at known positions {p; }2 ;.
® New test measurements of a moving source along an
unknown trajectory.
Output:
e Estimated source positions {p(#)}7_, corresponding
the test measurements.
For each time segment ¢:
1) Estimate the concatenated RTF vector h(t) of (6),
using (4) and (5).
2) Search for N nearest neighbors of h(¢) among the
training samples, and form the set H; = {h;, }}¥,
3) Form the sets H;, = h(t)|JH; and H; ;1 =
Ht U Htfl .
4) Compute the correlation terms between the current
sample h(¢) and the sets H; and H;_1, using (8)
and (9).
5) Compute the matrices A(H;;—1) and Q(H; —1)
according to (13).
6) Estimate the range differences {7 ()
according to (17).
7) Apply EKF recursion according to (25) and (26).

M
m=1°

reverberation level increases. Second, some of the relevant in-
formation is lost when instead of considering the entire acoustic
channels, the TDOA, which represents only the direct arrival of
the response, is extracted. On the other hand, the RTFs represent
high-dimensional features with unknown complex relations to
the source positions. The problem is alleviated by the assump-
tion that the RTFs are confined to a manifold of much lower
dimensions. The mapping to the corresponding source posi-
tions is modelled by a Gaussian process defined with respect
to the manifolds of the different nodes. The unknown relations
are recovered by a data-driven model deduced from the training
information.

The proposed hybrid scheme combines two data modalities
with different properties, aiming to inherit the advantages of
both, in order to improve the localization accuracy. The core
idea of combining different types of data modalities can be gen-
eralized in various ways. Both the RTFs and the TDOAs can be
substituted by other relevant observations with similar proper-
ties, which can be extracted from the measured signals (2), or
from other available measurements. Following the concepts of
the derived estimator, a large variety of hybrid trackers can be
derived, by the general scheme illustrated in Fig. 1.

VI. EXPERIMENTAL STUDY

We carried out a simulation study to examine the ability
of the proposed method to track a moving source in 2-D. In
Section VI-A, we describe the setup and present initial track-
ing results with fixed and varying velocity movements. In
Section VI-B, we present the reference algorithms and dis-
cuss their computational complexity. A comparison of the
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Fig. 1.

An illustration of the proposed general scheme, which combines two data modalities of different types: The first type is high-dimensional features

(RTFs), which are mapped to the hidden states (source positions) by a data-driven model using the training information, and form the state transition model
(prorogation model for the source movement (15)). The second type is low dimensional features (TDOAs), which have known relation to the hidden states and
form the observation model (TDOA-based observation model (18)). The derived state-space representation is iteratively solved using Bayesian filtering in two

steps: prediction step and update step (EKF recursion (25)).

performance for different reverberation and noise levels is pro-
vided in Section VI-C. Additional aspects of the proposed
method are examined in Section VI-D.

A. Experimental Setup and Initial Results

We simulated a 5.2 X 6.2 X 3 m room with 3 pairs of micro-
phones mounted next to the room walls, using MCROOMSIM,
a multichannel room acoustics simulator [52]. To simulate the
measured signal corresponding to a moving source along a spe-
cific trajectory, we filtered different parts of the speech signal
with AIRs corresponding to different positions along the speci-
fied trajectory. The filtering was performed in the STFT domain
using frames of 341 ms, and 93.75% overlap, where each frame
was multiplied by the corresponding transfer-function. Using a
proper inverse-STFT, we obtained the time-domain signals.

The locations of the source, both in the training and in the
test, were confined to a 2 X 2 m rectangular region, in a fixed
height of 1.5 m (the same height of all the microphones). The
sampling rate was set to 16 kHz. We generated a training set
with D = 36 samples, forming a regular grid with a resolution
of 0.4 m. The samples were generated using 3 s long speech
signals, in noiseless conditions. The room setup and the training
positions are illustrated in Fig. 2.

An initial examination was carried out to track a source, mov-
ing along both a straight line and a sinusoidal trajectory in the
designated region. The reverberation time was set to 200 ms.
The duration of the entire movement of the source was 3 s along
the straight line, and 5 s along the sinusoidal movement. For
both movement types, the source average velocity was approx-
imately 1 m/s. The measured signals were split into frames of
128 ms, with 75% overlap between successive frames. For each
frame, the RTF was estimated according to (4) using 3 succes-
sive time frames, and smoothed across time as in (5). Each RTF
sample consisted of K = 250 frequency bins, corresponding to
the 0-2 kHz frequency band, where most of the speech compo-
nents are concentrated. Fig. 3 depicts the two trajectories along

15
e sfe o sfe ¢ ok
5k 3 K K K
x e K kK x 4
x 5k 3 K K K x
o s o afe o ok 3
5k ¢ K % K
2
"
x%
6 4 2 0

Fig. 2. The room setup: blue x-marks denote the microphone positions and
red asterisks denote the training positions.

the x and the y axes and the obtained tracking results. It can be
observed that the proposed method is able to track the source
for both trajectories.

B. Compared Algorithms and Computational Complexity

A more comprehensive examination was carried out to eval-
uate the performance of the proposed method for different re-
verberation and noise levels. The results were compared with
a TDOA-based tracker (‘TDOA-EKF’) as in [15], in which the
manifold-based propagation model (14) is substituted by a sim-
ple random walk model. In addition, we compared the proposed
method to a learning-based approach (‘KNN-KF’) adapted
from [48], in which the TDOA-based observation model (18) is
substituted by a linear model that links between the predicted
positions of the subset H; to their known positions. These two
competing methods represent two opposite extremes, which are
combined in the proposed hybrid approach. The algorithms’
parameters are summarized in Table II.

We first discuss the computational complexity of the
proposed method as compared to the KNN-KF algorithm and
the TDOA-EKF algorithm. For simplicity, we equally weight
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TABLE II
ALGORITHMS’ PARAMETERS

TDOA-EKF KNN-KF Hybrid
Trans. Mat. 0.99 - I3 data-driven data-driven
Trans. Noise Cov. 1074 - 13 data-driven data-driven
10-7  for 200-300 ms /15-25dB for 200-500 ms/15-25 dB

Obs. Noise Cov. (o2 = { 10-5

for 400-600 ms/0-10 dB

1073
-3 . my2 _
1075 Iy (") {10*2 for 600 ms/0-10 dB
(071)? =107, V1 <i<N

TABLE III
COMPUTATIONAL COMPLEXITY

TDOA-EKF

KNN-KF Hybrid

RTF/Spectrum Estimation (4), (5)
TDOA Estimation (17)

N Nearest-Neighbors Search -
Covariance Computation (9), (13) -
EKF Recursion (25) O(M?)

O(MFlog, F)
O(MFlog, )

O(MF log, F) O(MF log, F)
O(MFlog, F)
O(Dlogy D)
O(KMD + M?DN)

O(M3 (N + 1))

O(Dlog, D)
O(KMD + M?DN)
O(M3(N +1)%)

multiplications, divisions, additions, subtractions and exponen-
tiations. The major factors that influence the complexity of the
implementation are: (i) the number of nodes M, (ii) the number
of training samples D, (iii) the number of training neighbors
N, (iv) the FFT length F' and (v) the number of concatenated
frequency bins K. The orders of magnitude of the different
operations performed by the algorithms are summarized in
Table III. The computations required in the training stage (can
be found in [42]) are performed off-line, hence are omitted from
Table III. The complexity of computing the covariance terms (9)

for constructing the matrices A(H; ;1) and Q(H; 1) ac-
cording to (13), is based on the analysis in [42]. The EKF recur-
sion (25) requires several matrix multiplications and one matrix
inversion, which at most require O(M?) or O(M?3(N + 1)?)
operations for either of the algorithms, assuming M > 2.

C. Algorithms’ Performance

Fifty Monte-Carlo trials were carried out with different speak-
ers moving along the defined straight line for 3 s. The same room
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Fig. 4. The RMSE for (a) various reverberation levels and for (b) various
noise levels.

and the same array geometry were used for both training and
testing. The test signals were generated using different utter-
ances than the ones used for training. Diffuse noise signals with
white spectrum were added to the measurements. The average
root mean square errors (RMSEs) of all three algorithms are
depicted in Fig. 4 as a function of the reverberation level (noise-
less) and as a function of the noise level (200 ms reverberation
time).

It can be observed that the TDOA-based approach [15] pre-
forms well in low reverberation and noise levels. However
its performance degrades in reverberant and noisy conditions,
most likely due to inaccurate TDOA estimates. Conversely, the
learning-based approach [48], which relies on the training in-
formation and takes into consideration the representation of the
acoustic channels, is more robust to reverberation and noise.
The proposed hybrid algorithm outperforms both competing al-
gorithms for all reverberation and noise levels. We conclude
that the hybrid method inherits the benefits of both approaches,
yielding an improved performance in various conditions.

D. Performance Analysis

We further investigated several aspects concerning the pro-
posed method. First, we evaluated the tracking performance with
respect to the number of nodes in the network. Second, we exam-
ined the ability of the proposed method to track to changes in a
switching scenario with several nonconcurrent moving speakers.

We examined the influence of the number of nodes on the
tracking performance. We used a network with five distributed
microphone pairs consisting of the three original nodes depicted
in Fig. 2, and two additional nodes located at: [1.5, 4.5, 1.5] and
[1.5,1.5,1.5]. For each fixed number of nodes M < 5, we ran-
domly chose M nodes out of five. We used the chosen nodes

O.Sﬁ
\
\
E0.4 \\
g \
\
~ 0.3
m_ -
-~
- [ -
0.2
2 3 4 5
Number of Mics

The RMSE as a function of the number of nodes.
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Fig. 6. Tracking results in a switching scenario of three nonconcurrent
speakers.

for tracking a source moving along the defined straight line for
Ts0 = 300 ms. The error was averaged over 50 trials with differ-
ent speakers and different network constellations. The average
RMSE is depicted in Fig. 5 as a function of the number of nodes
M e {1,...,5}. We observe a gradual performance improve-
ment as the number of nodes increases. By adding more nodes,
we gain more information representing different perspectives.
Merging all the view points together facilitates the identification
of interfering factors and the accurate localization of the source
position by appropriately matching the observations made by
the nodes.

Finally, we examined a switching scenario, which consists
of three nonconcurrent speakers with three different trajectories
starting from different points. The trajectory of the first speaker
starts from [2.85,2,1.5], continues along the y-axis for 1 m
during 1.5 s, and ends at [2.85,3,1.5]. The trajectory of the
second speaker starts from [3.4, 4, 1.5], continues along the y-
axis in the opposite direction for 1m during 1.5 s, and ends
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at [3.4,3,1.5]. The trajectory of the third speaker starts from
[2.7,3.5,1.5], continues along the x-axis for 2 m during 3 s, and
ends at [4.7, 3.5, 1.5]. The reverberation time was set to 200 ms.
The estimated trajectories evaluated by the proposed method
are depicted in Fig. 6 along the = and the y axes. We observe
that the proposed method is able to track changes after a short
adaptation time.

We conclude this section by highlighting the main points
demonstrated in the experimental results. We have shown that
the proposed method can track a moving source in various noisy
and reverberant conditions. In addition, we have seen that the
proposed method is superior over either a traditional TDOA-
based approach or a pure learning-based approach, stressing the
advantage of the combination of both methods in the proposed
hybrid algorithm. It was also shown that the performance is
improved by increasing the number of nodes in the network,
and that the proposed method successfully adapt to changes in
a switching scenario.

VII. CONCLUSION

A hybrid tracking algorithm is presented using a learning-
based model combined with a TDOA-based model. The source
propagation in the physical domain is learned from the varia-
tions of the RTF samples with respect to an acoustic manifold.
The structure of the manifold is inferred in a data-driven manner
from the training information. The source position is nonlinearly
related to the estimated TDOAs, which constitute the observa-
tion model. The resulting state-space formulation exploits both
the characteristics of the full acoustic channels represented by
the RTFs, and the direct arrival information represented by the
TDOA readings. Simulation results demonstrate the ability of
the proposed method to locate the source in challenging noisy
and reverberant conditions. The algorithm exploits the high ac-
curacy of TDOA-based methods in optimal conditions, while
maintaining robustness, which characterizes learning-based ap-
proaches.
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