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Abstract—Conventional speaker localization algorithms, based
merely on the received microphone signals, are often sensitive to ad-
verse conditions, such as: high reverberation or low signal-to-noise
ratio (SNR). In some scenarios, e.g., in meeting rooms or cars, it
can be assumed that the source position is confined to a predefined
area, and the acoustic parameters of the environment are approx-
imately fixed. Such scenarios give rise to the assumption that the
acoustic samples from the region of interest have a distinct geomet-
rical structure. In this paper, we show that the high-dimensional
acoustic samples indeed lie on a low-dimensional manifold and can
be embedded into a low-dimensional space. Motivated by this re-
sult, we propose a semi-supervised source localization algorithm
based on two-microphone measurements, which recovers the in-
verse mapping between the acoustic samples and their correspond-
ing locations. The idea is to use an optimization framework based
on manifold regularization, that involves smoothness constraints of
possible solutions with respect to the manifold. The proposed algo-
rithm, termed manifold regularization for localization, is adapted
while new unlabelled measurements (from unknown source loca-
tions) are accumulated during runtime. Experimental results show
superior localization performance when compared with a recently
presented algorithm based on a manifold learning approach and
with the generalized cross-correlation algorithm as a baseline. The
algorithm achieves 2◦ accuracy in typical noisy and reverberant
environments (reverberation time between 200 and 800 ms and
SNR between 5 and 20 dB).

Index Terms—Diffusion distance, manifold regularization, rel-
ative transfer function (RTF), reproducing kernel Hilbert space
(RKHS), sound source localization.

I. INTRODUCTION AND MOTIVATION

THE problem of source localization has attracted the atten-
tion of many researchers during the last decades. Various

applications rely on the recovery of the spatial position of an
emitting source, such as: automated camera steering [1], speaker
separation [2] and beamformer steering for robust speech recog-
nition [3]. For this reason, considerable amount of efforts have
been devoted to investigate this field and a wide range of
methods have been proposed over the years. Common to all
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localization approaches is the utilization of multiple micro-
phone recordings to infer the spatial information. The fun-
damental challenge is to attain robust localization in poor
conditions, i.e., in the presence of high reverberation and back-
ground noises.

Conventional localization approaches can be roughly divided
into two main categories: single- and dual-step approaches. In
the first class of algorithms, the source location is determined
directly from the microphone signals. The most dominant mem-
ber of this class is the maximum likelihood (ML) algorithm. The
algorithm is derived by applying the ML criterion to a chosen
statistical model of the received signals. This optimization often
involves maximization of the output power of a beamformer,
steered to all potential source locations [4]–[6]. Among these
methods we mention the well-known steered response power
phase transformation (SRP-PHAT) algorithm [7], [8]. Another
type of single-stage approaches is high resolution spectral esti-
mation methods, such as the multiple signal classification algo-
rithm [9], and the estimation of signal parameters via rotational
invariance techniques [10].

In the dual-step approaches category, the first stage involves
time difference of arrival (TDOA) estimation from spatially sep-
arated microphone pairs [11]. The classical method for TDOA
estimation is the generalized cross-correlation (GCC) algorithm
introduced in the landmark paper by Knapp and Carter [12].
The generalized cross-correlation (GCC) method relies on the
assumption of a reverberant-free model such that the acoustic
transfer function (ATF), which relates the source and each of the
microphones, is a pure delay. However, this assumption does not
hold in the presence of room reverberation, rendering a perfor-
mance deterioration [13]. Consequently, improvements of the
GCC method for the reverberant case were proposed [14]–[18].
Another type of approaches are subspace methods based on
adaptive eigenvalue decomposition [19] and generalized eigen-
value decomposition [20].

In the second algorithmic stage, the noisy TDOA estimates
are combined to carry out the actual localization. Each TDOA
estimate is associated with an infinite set of source positions,
lying on a half of an hyperboloid. The locus of the speaker
can be recovered by intersecting the hyperboloid surfaces corre-
sponding to the measurements of different pairs of microphones.
However, the computation of a 3-dimensional hyperboloids in-
tersection is a cumbersome task and tends to be sensitive to
TDOA estimation errors. In far-field regime the hyperboloid
can be approximated by a cone, and linear intersection estimate
can be applied [21]. Another simplifying approach is to recast
the hyperbolic equations into a spherical form, and apply the
nonlinear least squares approach [22].
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All the prementioned methods utilize the spatial information
conveyed by the received signals, but do not rely on any prior
information about the enclosure in which the measurements are
obtained. In some scenarios, e.g., in meeting rooms or cars, the
source position is confined to a predefined area. It is reasonable
to assume that representative samples from the region of interest
can be measured in advance. Examining the structures and pat-
terns characterizing the representative samples can be utilized
for formulating a data-driven model which relates the mea-
sured signals to their corresponding source positions. The addi-
tional information may help to better cope with the challenges
posed by reverberation and noise. So far, only few attempts
were made to involve training information for performing source
localization.

Deleforge and Horaud in [23], discussed a two-dimensional
sound localization scheme, in the binaural hearing context. Their
central assumption is that the binaural observations lie on an in-
trinsic manifold which is locally linear. Accordingly, they pro-
posed a probabilistic piecewise affine regression model, that
learns the localization-to-interaural mapping and its inverse.
In [24] and [25], the authors have generalized the algorithm to
deal with multiple sources using variational expectation maxi-
mization framework. Another approach presented in the field of
binaural hearing, is based on a Gaussian mixture model which is
used to learn the azimuth-dependent distribution of the binaural
feature space [26].

In [27] the task of direction of arrival (DOA) estimation was
formulated as a classification problem and a learning-based ap-
proach was presented. They proposed to extract features from
the GCC vectors and use a multilayer perceptron neural network
to learn the nonlinear mapping from such features to the DOA.

Talmon et al. [28] introduced a supervised method based
on manifold learning, using diffusion kernels. The main idea is
specifying the fundamental controlling parameters of the acous-
tic impulse response (AIR) using a manifold learning scheme.
Assuming that the position of the source is the only varying
degree-of-freedom of the system at hand, this process is capable
of recovering the unknown source locations. The key point of
the algorithm is to use an appropriate diffusion kernel with a
specifically-tailored distance measure, that is capable of finding
the underlying independent parameters, dominating the system.
Talmon et al. [29] have applied this method to a single micro-
phone system with a white Gaussian noise (WGN) input.

In [30] we adopted the paradigm of [29] and adapted it to a
more realistic setting where the source is a speech signal rather
than a WGN signal. The power spectral density (PSD) of the
speech signal is non-flat (as well as non-stationary). Hence,
the spectral variations may blur the variations attributed to the
different possible locations of the source. In order to mitigate
this problem, we committed two major changes in the algorithm
presented in [29]: 1) a second microphone was added and 2)
the feature vector, that was originally based on the correlation
function has been replaced by a PSD-based vector. It should be
emphasized that in [29] the feature vector was associated with
the AIR, whereas in [30] the feature vector relied on the relative
transfer function (RTF) which is the Fourier transform of the
relative impulse response.

Though localization algorithms based on the diffusion frame-
work were shown to perform well, their fundamental draw-
back is that they do not provide any guarantee for optimality.
In general, the diffusion-based methods are implemented by a
dual-stage approach. First, a low-dimensional embedding of the
representative samples is recovered in an unsupervised manner.
Second, the new representation is used to estimate the unknown
locations based on the labelled samples. The separation into
two stages where one is entirely unsupervised and the other is
entirely supervised is not necessarily optimal. Moreover, the
unlabelled data are not exploited for the estimation itself.

The significance of combining both labelled and unlabelled
data, in the source localization context, should be further em-
phasized. Classification and regression algorithms which rely
on training data are very popular in various applications, such
as: text categorization, handwriting recognition, images classi-
fication and speech recognition. Nowadays, there exist a rich
database for each of these tasks, with considerable amount of
examples with true labellings. Thus, these problems are more
usefully solved using fully supervised approaches. On the con-
trary, in the localization problem the training should fit to the
specific acoustic environment in which the measurements are
obtained, thus, we cannot create a general database that corre-
sponds to all possible acoustic scenarios. Instead, the training
set should be generated individually for each acoustic environ-
ment. To obtain labelled data, one needs to generate recordings
in a controlled manner and calibrate each of them precisely.
Generating a large amount of labelled data is a cumbersome and
impractical process. However, unlabelled data is freely avail-
able since it can be collected whenever someone is speaking.
This greatly motivates the use of semi-supervised approaches,
which mostly rely on unlabelled data, for the source localization
problem. Another motivation is related to the special character-
istics of the acoustic environment. As will be further elaborated
in this paper, the unlabelled data can be utilized for forming
a data-driven model of the acoustic environment that is very
useful for performing robust source localization.

To address the limitations of the previous diffusion-based ap-
proaches, and to better utilize the unlabelled data, we propose
the manifold regularization for localization (MRL) algorithm
based on two- microphone measurements. The method recovers
the inverse mapping between the RTFs and their correspond-
ing locations. In this approach we assume that the RTF samples
which originally have a high dimensional representation, pertain
to a low dimensional manifold. This assumption is supported by
the fact that any relative impulse response has a certain structure
of a decaying exponential envelope which consists of different
reflections. The gist of the algorithm is based on the concepts of
manifold regularization on a reproducing kernel Hilbert space
(RKHS), introduced by Belkin et al. [31]. The idea is to extend
the standard supervised estimation framework by adding an ex-
tra regularization term which imposes a smoothness constraint
on possible solutions with respect to a data-driven model. The
model is learned empirically by forming a data adjacency graph
over both labelled and unlabelled training samples. In this ap-
proach, the estimated location relies not only on the labelled
samples, but also on the unlabelled ones. Moreover, in order to
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efficiently utilize unlabelled samples received during runtime,
we propose an adaptive implementation. The Manifold Regu-
larization for Localization (MRL) algorithm iteratively updates
the system, based on the new information which becomes avail-
able while accumulating new unlabelled data. We compare the
proposed algorithm, with the diffusion distance search (DDS)
method, which is a diffusion-based algorithm. The discussion is
supported by an experimental study based on simulated data.

The paper is organized as follows. In Section II, we formulate
the problem in a general noisy and reverberant environment. We
motivate the choice of the RTF for forming a feature vector and
describe how it can be estimated based on the microphone mea-
surements. In Section III, we discuss the existence of an acoustic
manifold and formulate an optimization problem which relies on
a data-driven model computed based on both labelled and unla-
belled data. This formulation leads to the MRL algorithm which
is sequentially adapted by the unlabelled data accumulated
during runtime. We briefly describe our previous localization
method based on the diffusion framework [30] in Section IV.
Accordingly, we describe the derivation of the Diffusion Dis-
tance Search (DDS) algorithm which conducts a neighbors’
search using the diffusion distance as an affinity measurement
between RTFs. In Section V, we demonstrate the algorithms’
performance by an extensive simulation study. A comparison
between the MRL and the DDS algorithms is carried out in
Section VI. Section VII concludes the paper.

II. PROBLEM FORMULATION

We consider a standard enclosure, e.g., a conference room or a
car interior, with a moderate reverberation time. A single source
located atp = [px, py , pz ]T generates an unknown speech signal
s(n), which is received by a pair of microphones. The received
signals, denoted by x(n) and y(n), are contaminated by an
additive stationary noise, and are given by:

x(n) = a1(n,p) ∗ s(n) + u1(n) (1)

y(n) = a2(n,p) ∗ s(n) + u2(n) (2)

where n is the time index, ai(n,p), i = {1, 2} are the corre-
sponding AIRs relating the source at position p and each of the
microphones and ui(n), i = {1, 2} are the noise signals. Linear
convolution is denoted by ∗. Each of the AIRs consists of the
direct path between the source and the microphone, as well as
reflections from the surfaces characterizing the enclosure (both
early reflections and diffuse field components). Consequently,
even in moderate reverberation conditions, the AIR is typically
modelled as a long FIR filter.

The purpose is to localize the speaker based on the current
received microphone signals x(n) and y(n). We assume that we
are also given a set of prerecorded representative samples from
the region of interest. The training set is composed of N samples
of measured signals {x̄i(n), ȳi(n)}N

i=1 from various positions
within the specified region. Only l samples among the set are
labelled, i.e., their originating position p̄i is known. The rest
u = N − l samples are unlabelled, namely, their corresponding
source locations are unknown. To summarize, the training set

is composed of l labelled examples {x̄i(n), ȳi(n), p̄i}l
i=1 and u

unlabelled examples {x̄i(n), ȳi(n)}N
i= l+1 .

We are interested in a realistic scenario, where the amount of
labelled data is significantly smaller than the amount of unla-
belled data which can be collected online. Our goal is to build
an on-line system which is initially given a small amount of la-
belled data, and is gradually adapted as new unlabelled samples
are acquired.

The first step is to define an appropriate feature vector
that faithfully represents the characteristics of the acoustic
path and is invariant to the other factors, i.e., the station-
ary noise and the varying speech signals. For this purpose,
we use an equivalent representation of (1) and (2), defined
using the relative impulse response h(n,p), which satisfies
a2(n,p) = h(n,p) ∗ a1(n,p). Following this definition and
substituting (1) into (2), we obtain an equivalent formulation,
which directly relates the measurements in two microphones
[32]

y(n) = h(n,p) ∗ x(n) + v(n)

v(n) = u2(n) − h(n,p) ∗ u1(n). (3)

In this representation, the relative impulse response h(n,p) rep-
resents the system relating the measured signal x(n) as an input
and the measured signal y(n) as an output. For convenience, we
use the Fourier transform of the relative impulse response, which
is termed the RTF, and satisfies H(k,p) = A2(k,p)/A1(k,p),
where A1(k,p) and A2(k,p) are the ATFs of the respective
AIRs, and k denotes a discrete frequency index. Using the PSD
and cross power spectral density (CPSD) of the measured sig-
nals y(n) and x(n), defined in (1) and (2), the RTF H(k,p) is
obtained by:

H(k,p) =
Syx(k,p)

Sxx(k,p) − Su1 u1 (k)
k = 0, . . . , D − 1

=
Sss(k)A2(k,p)A∗

1(k,p)
Sss(k)|A1(k,p)|2 =

A2(k,p)
A1(k,p)

(4)

where Syx(k,p) is the CPSD between y(n) and x(n), Sxx(k,p)
is the PSD of x(n), Su1 u1 (k) is the PSD of the noise in the
first microphone u1(n), and Sss(k) is the PSD of the source
s(n). The choice of the value of D should balance the tradeoff
between the correspondence with the relative impulse response
length (large value) and latency considerations (small value).

Since A1(k,p) and A2(k,p) are unavailable, we estimate the
RTF by

Ĥ(k,p) ≡ Ŝyx(k,p)
Ŝxx(k,p)

. (5)

Note that this estimator is biased since we neglect the PSD of
the noise Su1 u1 (k). Alternatively, unbiased estimators can be
used, such as the RTF estimator based on the non-stationarity
of the speech signal [32]. However, we are not concerned
with robust estimation of the RTF since we will show that
the proposed method performs well using the biased RTF
estimator. Accordingly, we define the feature vector h(p) =
[Ĥ(0,p), . . . , Ĥ(D − 1,p)]T as the concatenation of estimated
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RTF values in the D frequency bins (corresponding to the first
half of the Fourier transform due to symmetry for real-valued
functions). In practice, we discard low and high frequencies
in which the ratio in (5) is meaningless due to weak speech
components. Since speech signals are mainly concentrated in
0.2–2.5 kHz we use only the estimated RTF values in this fre-
quency band. For the sake of clarity, we omit the dependency
on the position, and denote the RTF feature vector by h.

III. MANIFOLD REGULARIZATION FOR LOCALIZATION

Our goal is to recover the target function which transforms
each RTF to its corresponding location, based on the training set
comprised of both labelled and unlabelled samples. Finding such
an inverse mapping is non-trivial due to the complex nonlinear
relation between the high-dimensional RTFs and the originat-
ing locations. To mitigate this problem we adopt the concepts
of manifold regularization, introduced by Belkin et al. [31],
[33], and present it in the light of the acoustic environment and,
in particular, for the source localization problem at hand. It is
important to note that, originally, the concepts of manifold reg-
ularization were implemented for classification, whereas, here,
it is applied to the problem of source localization which is a
regression problem.

Two guiding principles are in the core of the proposed method,
that will be termed MRL. First, instead of using complex vari-
ational calculus for estimating the target function, we assume
that the function resides in an RKHS. Due to the special char-
acteristics of the functions belonging to the RKHS, the problem
can be formulated simply as a system of linear equations. Sec-
ond, we incorporate geometrical considerations, i.e., we use the
information implied by the intrinsic patterns observed in the
set of RTFs to build a data-driven model. Then, the solution is
constrained to behave smoothly with respect to this data-driven
model, representing the intrinsic structure of the RTFs.

A. The Acoustic Manifold

As mentioned in Section II, the RTFs have a high-dimensional
representation in CD that corresponds to the vast amount of
reflections from the different surfaces characterizing the en-
closure. However, the coefficients of a typical relative impulse
response are confined to an exponentially decaying pattern. Fur-
thermore, RTFs drawn from a certain region of interest in the
enclosure have an even more specific structure and thus are not
spread uniformly in the entire space of CD . Instead, they are
confined to a compact manifold M of dimension d, which is
much smaller compared to the dimension of the ambient space,
i.e., d � D.

This assumption is further justified by the fact that the RTFs
are influenced by only a small set of parameters related to the
physical characteristics of the environment, such as: the enclo-
sure dimensions and shape, the surfaces’ materials and the po-
sitions of the microphones and the source. Moreover, we focus
on a static configuration, in which the properties of the enclo-
sure and the position of the microphones remain fixed. In such
an acoustic environment, the only varying degree of freedom
is the source location. Accordingly, we assume that the RTFs

can be intrinsically embedded in a low-dimensional manifold
which is governed by the position of the source. The existence
of such an acoustic manifold was discussed in detail in [34], and
was demonstrated with respect to the DOA of the source. The
main results will be briefly described in the experimental part,
in Section V-B.

Roughly, we consider a manifold of reduced dimensions
which may have a complex nonlinear structure. However, in
small neighborhoods the manifold is locally linear, meaning
that in the vicinity of each point it is flat and coincides with the
tangent plane to the manifold at that point. Here, we assume that
a small movement in the physical position has a little effect on
the corresponding RTF, yet large movements give rise to very
different RTFs. The same principle ensures the ability of acous-
tic echo cancellation (AEC) methods [35] to adaptively identify
and track acoustic systems. Hence, the Euclidean distance can
faithfully measure affinities between points that reside close to
each other on the manifold. For larger scales, the Euclidean
distance is meaningless, and we should rather use the geodesic
distance on the manifold. However, the geodesic distance can
be evaluated only when the structure of the manifold is known.
In order to respect the manifold structure we will only examine
local connections between points and disregard larger distances.

B. Background of RKHS

Our goal is to find the inverse-mapping function that receives
an RTF sample and returns the corresponding source location.
In general, estimating a function that minimizes a cost func-
tion, is a cumbersome task that requires complex mathematical
tools, such as variational calculus. One simplifying approach
is to assume that the target function belongs to a certain class
of functions with a specific structure. For example, it can be
assumed that the target function belongs to a certain space of
functions, spanned by an orthogonal basis. Hence, the target
function can be represented by a linear combination of the basis
functions, where the weights are determined according to the
projections of the function on each of the basis functions. In our
case we assume that the target function belongs to an RKHS
associated with a unique kernel function that evaluates each
function in the space by an inner product. Rather than comput-
ing the basis functions spanning the space, we use an analogue
representation with linear combinations of the kernel function.
According to this representation, the problem can be converted
to a simple linear estimation of a finite set of parameters.

We will first represent the kernel function and its properties,
and then define the RKHS and discuss its representation by the
kernel function that will be used for deriving the optimization
problem in Section III-C. In Appendix VII, we show that the
eigenfunctions associated with the kernel form an orthogonal
basis for the RKHS, and discuss an analogue representation in
terms of these basis functions.

As implied by its name, an RKHS is associated with a kernel
function k : M×M → R that measures a pairwise affinity
between RTFs. The kernel function must satisfy the following
two conditions:

1) Symmetry: k(hi ,hj ) = k(hj ,hi) ∀hi ,hj ∈ M.
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2) Positive semi-definite: the n × n matrix K with Kij =
k(hi ,hj ) is positive semi-definite, for any arbitrary finite
set of points {hi}n

i=1 ∈ M.
Another essential requirement from the kernel is that it de-

fines a notion of locality, determined with accordance to a
scaling factor εk : for ‖hi − hj‖ � εk , k(hi ,hj ) → 1, and for
‖hi − hj‖ 	 εk , k(hi ,hj ) → 0. A common choice is to use a
Gaussian kernel with variance ε2

k :

k(hi ,hj ) = exp
{
−‖hi − hj‖2

ε2
k

}
. (6)

Clearly, the Gaussian kernel is a symmetric positive semi-
definite function, and satisfies the locality property. In general,
other radial basis functions have this locality property and thus
can be used instead of the Gaussian function.

The locality property is of major importance in our case,
since the kernel receives RTFs, sampled from the manifold M.
As discussed above, the manifold is in general nonlinear and
is assumed to be locally linear over small patches. Due to its
property of locality, the kernel function constitutes an affinity
measure that respects the manifold structure.

An RKHS, denoted as Hk , is a Hilbert space of functions,
mapping each h ∈ M to R, which is associated with a kernel k.
We skip the formal definition of an RKHS (for details see [36]
and[37]). Instead, we state the two main properties of an RKHS:

1) For all h ∈ M, kh(·) ∈ Hk

2) The reproducing property: for all f ∈ Hk and h ∈ M,
〈f(·), kh(·)〉 = f(h)

where for each h ∈ M we define the real valued function
kh(·) ≡ k(h, ·). The first property simply states that the RKHS
consists of all functions defined by the kernel k at some point on
the manifold. The second property implies that the kernel k has a
special property that it evaluates all the functions in the space by
an inner product. For example, in L2 the delta function has the
reproducing property since it evaluates all the functions in L2 :
〈δ(y, ·), f(·)〉L2

= f(y). Nevertheless, this does not define an
RKHS, since the delta function does not belong to L2 . However,
the space of bandlimited functions in the range −a < ω < a,
where ω is the radial frequency, is an RKHS and the reproducing
kernel is the sinc function: kx(y) = sin(a(y − x))/(π(y − x)).

We have seen that an RKHS is associated with a unique
reproducing kernel function. In the opposite direction, known
as the Moore-Aronszajn theorem [36], every symmetric, positive
definite kernel k defines a unique RKHS Hk that is given by the
completion (an expansion that includes the limits of all Cauchy
sequences) of the space of functions spanned by the set {kh i

(·)}:{
f |f(·) =

∑
i

cikh i
(·); i ∈ N, ci ∈ R,hi ∈ M

}
(7)

with respect to the following inner product:

〈f(·), g(·)〉 =

〈∑
i

cikh i
(·),

∑
j

dj khj
(·)

〉

=
∑
i,j

cidj k(hi ,hj ). (8)

It can be easily verified that the two mentioned properties of an
RKHS are satisfied by this definition. Obviously, the reproduc-
ing kernel belongs to the space, and the reproducing property
holds, since:

〈f(·), kh(·)〉 =

〈∑
i

cikh i
(·), kh(·)

〉

=
∑

i

cik(hi ,h) = f(h). (9)

An equivalent definition of an RKHS, based on Mercer’s the-
orem [38], is discussed in Appendix VII. According to this view
point, any function f ∈ Hk can be represented by an orthogonal
basis of functions {ψi(·)} related to the kernel k:

Hk =

{
f |f(·) =

∑
i

αiψi(·) and ||f ||Hk
< ∞

}
. (10)

where ‖ · ‖2
Hk

is the RKHS norm that corresponds to the inner
product defined in (9). To circumvent the computation of the
basis functions, we use the representation of (7), in terms of the
kernel function.

C. Optimization and Manifold Regularization

In this section, we present the optimization over the tar-
get function assuming that it belongs to an RKHS Hk with
a reproducing kernel k. Formally, we search for a function
fc : CD → R c ∈ {x, y, z} which is the inverse mapping be-
tween an RTF and its corresponding position, i.e., fc(h) = pc .
In this paper, we focus on estimating one position coordinate,
thus, we omit the coordinate subscript. However, the analysis,
the results and the algorithm described here can be naturally
extended to estimating several coordinates.

The search will be formulated by the following optimization
problem:

f ∗ = argmin
f∈Hk

1
l

l∑
i=1

V (f(h̄i), p̄i) + γk‖f‖2
Hk

+ γM ‖f‖2
M

(11)
where ‖ · ‖2

Hk
is the RKHS norm, ‖ · ‖2

M is the intrinsic norm
defined with respect to the manifold M, and γk , γM are scalar
parameters. The RKHS norm is the general norm defined in Hk ,
while the intrinsic norm expresses the behaviour of the function
with respect to the geometrical structure of the manifold.

The optimization problem consists of three components. The
first term is an empirical cost function defined over the labelled
samples {h̄i}l

i=1 . The function V evaluates the extent of corre-
spondence between the evaluations of the target function f(h̄i)
and the true labels p̄i . In our case, we set the cost function to
be the squared loss function (p̄i − f(h̄i))2 . Note that while the
L2 norm is not suitable for comparing between RTFs [34], it is
a reasonable choice for evaluating localization quality.

The two last terms in (11) are regularization conditions.
Roughly, their role is to prevent the solution from overfitting
to the labelled examples. The second term is the Tikhonov regu-
larization which penalizes the RKHS norm of the function to im-
pose smoothness condition in Hk . The additional regularization



1398 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 8, AUGUST 2016

term, defined by the last term in (11), was introduced by Belkin
et al. [31]. This is an intrinsic regularization that represents a
smoothness penalty of the function with respect to the manifold
M.

One natural choice for the intrinsic norm is to measure the
gradient of the function along the manifold, i.e., to measure
the variability of the function with respect to small movements
on the manifold. Since the manifold structure is unknown, this
term should be approximated on the basis of both labelled and
unlabelled samples. The training set {h̄}N

i=1 , which includes
different realizations of possible acoustic paths, can be viewed
as a discrete sampling of the manifold M. The manifold can
be empirically represented by a graph in which the training
samples are the graph nodes, and the weights of the edges are
defined according to an N × N adjacency matrix W between
the samples:

Wij =

{
exp

{
−‖h̄ i −h̄j ‖2

ε2
w

}
if h̄j ∈ Ni or h̄i ∈ Nj

0 otherwise
(12)

where Nj is a set consisting of the n nearest-neighbors of h̄j

among {h̄i}N
i=1 , and εw is a scaling factor. The set Nj of near-

est neighbors is determined according to the regular Euclidean
distance between RTFs which is reliable for small scales, and
meaningless only for large distances.

The adjacency matrix W is used to form the graph Laplacian
L, by L = D − W, where D is a diagonal matrix with Dii =∑N

j=1 Wij . It can be shown, under certain conditions, that the
graph Laplacian L converges to a differential operator on the
manifold M, as was discussed in detail in [39]–[41]. Hence,
the gradient of the function along the manifold can be approxi-
mated using the graph Laplacian. Accordingly, an intrinsic mea-
sure of data-dependent smoothness is given by: ‖f‖2

M = fT Lf ,
where f =

[
f(h̄1), ..., f(h̄N )

]
. Thus, the optimization prob-

lem (11) can be recast as:

f ∗ = argmin
f∈HK

1
l

l∑
i=1

(p̄i − f(h̄i))2 + γk‖f‖2
HK

+ γM fT Lf .

(13)
Further insight can be obtained by the expansion of the intrinsic
regularization:

f T Lf =
N∑

i ,j=1

f (h̄i )Lij f (h̄j )

=
N∑

i=1

(
N∑

j=1

Wij − Wii

)
f 2 (h̄i ) −

N∑
i ,j=1
i 
= j

Wij f (h̄i )f (h̄j )

=
N∑

i ,j=1

Wij f
2 (h̄i ) −

N∑
i ,j=1

Wij f (h̄i )f (h̄j )

=
1
2

N∑
i ,j=1

Wij

(
f (h̄i ) − f (h̄j )

)2
. (14)

Intuitively, in (14), large Wij , corresponding to strong similarity
between h̄i and h̄j , implies a tendency of f(h̄i) and f(h̄j ) to
be close to each other. For this reason, a truncated kernel was

chosen in (12), since it is reasonable to penalize the function
only when the corresponding RTFs reside in the same local
neighborhood.

Note that (13) is a semi-supervised formulation, since it in-
volves both labelled and unlabelled samples. While the first
term is merely based on the labelled samples, the last two terms
are based on both labelled and unlabelled data. The two regu-
larization parameters γk and γM balance between maximizing
the correspondence to the labelled data, and maintaining low
complexity of possible solutions. In some respects, both regu-
larization terms try to relate the target function to the manifold
M by the two different kernels defined in (6) and (12). Involv-
ing two kernels associated with different scales represents two
different measurements of smoothness with respect to the man-
ifold. Since the real structure of the manifold is unknown, the
combination of both kernels is essential for obtaining a more
accurate modelling of the manifold.

The representer theorem [42] states that the minimizer f ∗ of
(13) is a linear combination of the kernel functions only in the
set of labelled and unlabelled points {h̄i}N

i=1 , i.e., it is given by:

f ∗(h) =
N∑

i=1

aik(h̄i ,h) (15)

where {ai} are the interpolation weights. In Appendix VII,
we provide the proof of the theorem [31], which is derived
by a simple orthogonality argument, and relies on the specific
structure of the functions in Hk implied by (7), together with
the reproducing property that uniquely characterizes the RKHS.
The representer theorem dramatically simplifies the regularized
optimization problem of (13) so it can be formulated as a linear
optimization over a finite set of parameters {ai}.

D. Derivation of the Localization Algorithm

In the previous section we formulated an optimization prob-
lem with manifold regularization for recovering the target func-
tion f in (13). Based on the representer theorem stated in (15),
the optimization boils down to estimating the interpolation
weights {ai}. Substituting (15) in (13) yields a second-order
polynomial objective function of a = [a1 , ..., aN ]T :

a∗ = argmin
a∈RN

1
l

(q − JKa)T (q − JKa)

+ γkaT Ka + γM aT KLKa (16)

where K is the N × N Gram matrix of k defined by
Kij = k(h̄i , h̄j ); J is a N × N diagonal matrix: J =
diag(1, ..., 1, 0, ..., 0) with l ones and u zeros on its diagonal
(functions as an indicator for the labelled samples in the set);
and q = [p̄1 , ..., p̄l , 0, ..., 0]T is a label vector comprising the
l known positions of the labelled samples with qi = 0, for all
i > l. Differentiating with respect to a and comparing to zero,
yields

1
l
(−JK)T (q − JKa) + (γkK + γM KLK)a = 0. (17)
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By rearranging (17), we obtain the following linear system:

[JK + lγkIN + lγM LK]a = q (18)

where IN is the N × N identity matrix. Accordingly, the inter-
polation weights a are given by:

a∗ = [JK + lγkIN + lγM LK]−1 q. (19)

Thus far, the computations were carried out offline based only
on the training set, composed of both labelled and unlabelled
samples. The input to the algorithm is a new pair of measure-
ments {x(n), y(n)}, generated by an unknown source from an
unknown location on the manifold. The corresponding feature
vector h is estimated according to (5). The kernel between the
new sample h and each of the training samples {h̄i}N

i=1 , is
evaluated. The position of the new measurement is estimated
according to (15) by a weighted sum of these kernel evaluations
multiplied by the weights given by (19):

p̂ = f(h) =
N∑

i=1

a∗
i k(h̄i ,h). (20)

E. Adaptive MRL

In this section we summarize the algorithm and formulate
it in a dual-stage structure. The algorithm is composed of two
main parts: system adaptation and localization. In the adapta-
tion stage, the interpolation weights a∗ are computed according
to (19) based on the labelled and unlabelled samples, which
were collected up to this point in time. In the localization stage,
we receive a new pair of measurements {x(n), y(n)} of an
unknown source from an unknown location, and estimate the
corresponding position based on the weights computed in the
previous stage.

We take advantage of the fact that the optimization is de-
rived in a semi-supervised manner, and propose an adaptive
version. At first, the system is initialized with a small amount
of labelled and unlabelled data, and the corresponding weights
are computed. When new test samples become available, their
corresponding positions are estimated based on the computed
weights. After acquiring q unlabelled samples (that are known
to lie on the manifold), they are added to the existing set of
unlabelled samples, i.e. u ← u + q. Then, the weights are re-
computed for the new extended set, i.e., the system is adapted
and the total number of weights increases by q. We continue to
adapt the system whenever q additional unlabelled samples are
accumulated, until we acquire a sufficient amount of unlabelled
samples such that there is no additional benefit in recomputing
the weights. Note that the adaptation process can potentially
adjust to changes in the environmental conditions if also the
labelled samples can be updated. However, this attribute was
not examined in the current paper that focuses on static config-
urations. Examining dynamic scenarios with changing environ-
mental conditions is left for future work.

The proposed MRL algorithm is summarized in Algorithm 1
and is illustrated in a flow diagram in Fig. 1. The flow diagram
emphasizes the duality between the two parts of the algorithm
and the interaction between them. In the downward direction,

Algorithm 1: Manifold Regularization for Localization.
Parameters: εk , εw , n, γk , γM

System Adaptation:
Input : N = l + u training points:
l labelled samples {x̄i(n), ȳi(n), p̄i}l

i=1
u unlabelled samples {x̄i(n), ȳi(n)}N

i= l+1
Output: Interpolation weights a∗

1) For each point estimate the corresponding RTF h̄i

according to (5).
2) Construct the reproducing kernel matrix K and the

adjacency matrix W, according to (6) and (12)
respectively, based on

{
h̄i

}N

i=1 .
3) Compute the expansion weights a∗ according to (19).

Localization:
Input : A new pair of measurements {x(n), y(n)}
produced by an unknown source from an unknown location
Output: Estimated position p̂

1) Estimate the corresponding RTF h according to (5).
2) Compute the affinity between h and each of

{
h̄i

}N

i=1 ,
using the reproducing kernel.

3) Estimate the new point location using the estimated
interpolation weights: p̂ = f(h) =

∑N
i=1 a∗

i k(h̄i ,h).
After acquiring q new samples, return to System Adaptation
and add the new unlabelled samples, u ← u + q.

the model of the system derived in the adaptation part is utilized
for localization. In the upward direction, the new unlabelled
samples acquired in the localization stage, are propagated and
utilized for system adaptation, in addition to the existing un-
labelled samples. Moreover, note that the two rightmost (blue)
blocks are semi-supervised whereas the rest of the blocks are
unsupervised.

It should be emphasized that we do not present an update
mechanism, but instead the weights are computed from scratch
in each adaptation iteration. The development of a recursive
version of the algorithm is left for future work.

The number q of new unlabelled samples that should be accu-
mulated before the system is adapted, is chosen empirically to
obtain satisfactory performance. Note that when a too small
value is chosen, the computational complexity is increased,
without gaining a significant performance improvement. Fur-
thermore, adding only a small amount of unlabelled informa-
tion does not change the weights significantly, yet it gradually
affects the complexity of the solution.

IV. REVIEW OF LOCALIZATION BASED ON

DIFFUSION MAPPING

In this section, we briefly review a method for semi-
supervised localization that was presented in [30]. This method,
that will be termed DDS, is a dual-stage approach based on
the concepts of diffusion maps [43], [44]. In the first stage
we recover the mapping between the original space CD and
the embedded space Rd which is governed by the controlling
parameter, i.e., the position of the source. The second step is
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Fig. 1. Flow diagram of the proposed MRL algorithm. The algorithm consists of two parts: system adaptation and localization. In the adaptation part, both
labelled and unlabelled samples are utilized to build a data-driven model for the RTFs and relate it to the position of the source. In the localization part, the position
of a new pair of measurements is estimated based on the model learnt in the adaptation stage. The newly acquired unlabelled samples in the localization stage, are
propagated and utilized for system adaptation.

performing the localization by searching the neighbors of the
new point among the training set in the new recovered space.
Note that both the MRL and DDS algorithms rely on the in-
formation implied by the manifold M. Nevertheless, there are
several fundamental aspects that distinguish between the two,
as will be elaborated in Section VI.

A. Parametrization of the Manifold

In the previous section we introduced a discrete representa-
tion of the manifold by a graph in which the training samples
are the graph nodes, and the weights of the edges are defined
according to the adjacency matrix W of (12). The adjacency
graph is normalized to obtain the transition matrix P = D−1W,
which defines a Markov process on the graph. Accordingly,
p(hi ,hj ) ≡ Pij represents the probability of transition in a sin-
gle Markov step from node hi to node hj .

A nonlinear mapping of the samples into a new embedded
space is obtained by a spectral decomposition of the transition
matrix P. The embedding is based on a parametrization of the
manifold M, which forms an intrinsic representation of the
data. We apply a singular value decomposition to the transition
matrix P, and obtain a set of the N principal right-singular vec-
tors {ϕj}N −1

j=0 , and N singular values {λj}N −1
j=0 . The d principal

right-singular vectors that correspond to the d largest singu-
lar values, form the diffusion mapping of the samples into an
Euclidean space Rd , defined by

Φd : hi �→
[
λ1ϕ

(i)
1 , . . . , λdϕ

(i)
d

]T

(21)

where ϕ
(i)
k denotes the ith entry of the vector ϕk . Usually, ϕ0

is ignored since it is equal to a column vector of ones.
In the localization stage, the embedding should be extended,

given a new RTF sample h, corresponding to a new pair of mea-
surements {x(n), y(n)} produced by an unknown source from
unknown location. Further spectral decomposition is unneces-
sary according to Nyström extension [45]. The new spectral
coordinates are obtained by:

ϕ∗
j =

1
λj

bT ϕj j ∈ {1, . . . , d} (22)

where b is an affinity vector between the training set and the
new test point:

bi = exp
{
−‖h̄i − h‖2)

ε2
w

}
. (23)

B. Nearest Neighbor Search on the Manifold

In Section III-A we described the structure of the acoustic
manifold M of the RTFs. We stated that in order to properly
measure affinities between RTFs, we should use the geodesic
distance, which is the shortest path on the manifold. An approx-
imation of the geodesic distance is given by diffusion distance,
defined as:

D2
Diff (hi ,hj ) = ‖p (hi , ·) − p (hj , ·) ‖2

φ0

=
N∑

r=1

(p (hi ,hr ) − p (hj ,hr ))
2 /φ

(r)
0

where φ0 is the most dominant left-singular vector of P.
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The diffusion distance incorporates information of the entire
set to determine the connectivity between pairs of samples on the
graph. Pairs of points that are closely related to the same subset
of points in the graph, are considered close to each other and
vice versa. It can be shown that the diffusion distance is equal to
the Euclidean distance in the diffusion maps space when using
all N eigenvectors. This equivalence emphasizes the virtue of
the diffusion mapping as it indicates that the mapping preserves
the affinity between points with respect to the manifold. The
diffusion distance can be well approximated by only the first d
principal eigenvectors [43], i.e.,

DDiff (hi ,hj ) ∼= ‖Φd(hi) − Φd(hj )‖. (24)

Equipped with the ability to measure distances along the
manifold using the diffusion distance, we are able to properly
quantify the affinities between RTF samples. Samples which
reside next to each other on the manifold, are assumed to be
physically adjacent, i.e., they are likely to represent sources
from close positions. Thus, the position of a new sample can
be estimated by searching for its neighbors on the manifold.
Accordingly, the estimate will be formulated as a weighted sum
of the positions of the labelled samples, where the weights are
proportional to the corresponding diffusion distance between
the new sample and each of the labelled samples:

p̂ =
∑
i∈Ni

γ
(
h̄i

)
p̄i (25)

where the weights γ
(
h̄i

)
are given by:

γ
(
h̄i

)
=

exp
{
−D2

Diff

(
h, h̄i

)
/ε2

γ

}
∑

j∈Ni
exp

{
−D2

Diff

(
h, h̄j

)
/ε2

γ

} . (26)

where εγ is a scaling factor. The DDS procedure is summarized
in Algorithm 2. Here, n1 represents the number of neighbors
in (12), and n2 represents the number of neighbors in (25).

Note that both labelled and unlabelled samples participate
in the first stage, for the construction of the graph Laplacian.
However, in the localization stage only the labelled samples are
utilized because we rely on the labellings. Though both the MRL
and the DDS algorithms have evident similarities, we show in
the experimental part that the later is inferior due to its different
utilization of unlabelled data.

V. EXPERIMENTAL RESULTS

A. Setup

We describe the simulated setup used for conducting the ex-
perimental study. We simulated a 6 × 6.2 × 3 m room, using
an efficient implementation [46], of the image method [47]. In
the room there are two microphones located at (3, 3, 1) m and
(3.2, 3, 1) m, respectively. The source is known to be positioned
at 2 m distance with respect to the first microphone, on the same
height. The goal is to recover the azimuth angle of the source.
The initial analysis and examination of algorithms is carried out
assuming that the azimuth angle of the source is ranging be-
tween 10◦ ÷ 60◦. Then, the algorithm performance is further
demonstrated on a wider range of azimuth angles between
0◦ ÷ 180◦. Fig. 2 illustrates the simulation setup.

Algorithm 2: DDS
Parameters: εw , εγ , n1 , n2 , d
Diffusion Mapping:
Input : N = l + u training points:
l labelled samples {x̄i(n), ȳi(n), p̄i}l

i=1
u unlabelled samples {x̄i(n), ȳi(n)}N

i= l+1
Output: Embedding Φd(·)

1) For each point estimate the corresponding RTF h̄i

according to (5).
2) Construct the graph W based on

{
h̄i

}N

i=1 , and form
the transition matrix P.

3) Employ singular value decomposition of P and
obtain the singular-values {λj} and the right-singular
vectors {ϕj}.

4) Construct the map Φd according to (21) to obtain
an embedding that represents the intrinsic structure
of the manifold M.

Localization:
Input : A new pair of measurements {x(n), y(n)}
produced by an unknown source from an unknown location
Output: Estimated position p̂

1) Estimate the corresponding RTF h according to (5).
2) Apply Nyström extension according to (22) to obtain

the spectral coordinates of h.
3) Compute the approximated diffusion distance

between Φd(h) and each of the labelled samples
{Φd(h̄i)}N

i=1 , according to (24).
4) Estimate the new point location by (25) as a linear

combination of the positions of the labelled samples
according to distances in the diffusion mapped space.

Fig. 2. An illustration of the room setup. The purple arc marks the region
where the source is assumed to be positioned. The red dots define the grid of
the labelled examples.

For each location, we simulate a unique 3 s speech signal,
sampled at 16 kHz. The clean speech is convolved with the
corresponding AIR and is contaminated by a WGN. This forms
the measured signals in the two microphones. For each source
location, the CPSD and the PSD are estimated with Welch’s
method with 0.128 s windows and 75% overlap and are utilized
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Fig. 3. (a) The Euclidean distance and the diffusion distance between each
of the RTFs and the RTF corresponding to 10◦, as a function of the angle. The
dashed line shows the boundary angle until which monotonicity is preserved for
the Euclidean distance. (b) Single-element diffusion mapping Φ1 (·).

for estimating the RTF in (5) for 2048 frequency bins. The
RTF vector consists of D = 286 frequency bins corresponding
to 0.2–2.5 kHz, in which most of the speech components are
concentrated.

B. Analysis of the Manifold

In this section we review the main results presented in [34].
We investigate the acoustic manifold of the RTFs and examine
the proper distance between them that maintains physical adja-
cency. The analysis is carried out using a set of N = 400 RTF
samples, corresponding to 400 positions distributed uniformly in
the specified range, between 10◦ ÷ 60◦ at 2 m distance from the
first microphone. Two alternative distance measures for quan-
tifying the affinity between different RTFs, are addressed. We
start with the Euclidean distance defined by:

DEuc(hi ,hj ) = ‖hi − hj‖. (27)

The Euclidean distance is compared with the diffusion distance
presented in Section IV-B.

Fig. 3(a) depicts the Euclidean distance and the diffusion
distance between each of the RTFs and a reference RTF cor-

responding to 10◦, as a function of the angle. We used a mod-
erate reverberation time of 300 ms and WGN of 20 dB SNR.
We observe that the monotonic behaviour of the Euclidean dis-
tance with respect to the angle is confined to approximately 3.2◦

range. Consequently, we conclude that the Euclidean distance
is meaningful only for small arcs. Thus, in general the Eu-
clidean distance is not a good distance measure between RTFs.
However, it can be properly utilized when inserted into a Gaus-
sian kernel in either the manifold regularization framework or
the diffusion framework. According to its scaling parameter,
the Gaussian kernel preserves small distances and suppresses
large distances which are meaningless. The kernel scale should
be adjusted to the distance at which monotonicity is maintained
by the Euclidean distance, in order to preserve locality.

For the diffusion distance, only the first element in the map-
ping (d = 1) was considered. This choice will be justified in the
sequel. We can see that for almost the entire range, the diffusion
distance remains monotonic with respect to the angle, indicat-
ing that it is an appropriate metric in terms of the source DOA.
Further insight into the mapping itself, is gained by plotting the
single-element mapping Φ1(·), as depicted in Fig. 3(b). We ob-
serve that the mapping corresponds well with the angle up to a
monotonic distortion. Thus, the diffusion mapping successfully
reveals the latent variable, namely, the position of the source.
The almost perfect matching between the first element of the
mapping and the corresponding angle, justifies the use of d = 1
for estimating the diffusion distance.

To summarize, the presented results strengthen the claim on
the existence of a nonlinear acoustic manifold. In small neigh-
borhoods around each point, the manifold is approximately flat,
meaning that it resembles an Euclidean (linear) space. For larger
scales the affinity between RTFs should be determined accord-
ing to the geodesic distance on the manifold. The diffusion
framework successfully reveals the latent variable controlling
the acoustic manifold, and the diffusion distance properly re-
flects the distances on the manifold. These results motivate the
involvement of manifold aspects in the localization process, as
introduced by either the MRL or the DDS algorithms.

C. Localization Results

In this section we examine the ability of both DDS and MRL
to recover the DOA of the source. The training set consists
N = 400 representative samples distributed uniformly between
10◦ ÷ 60◦. Among the training set, only l = 6 samples were la-
belled, creating a grid with approximately 10◦ distance between
adjacent labelled samples, as depicted in Fig. 2. The perfor-
mance is examined on a set of T = 120 additional samples
produced by unknown sources from unknown locations, con-
fined to the defined range between 10◦ ÷ 60◦. The performance
is measured according to the root mean square error (RMSE),
defined by:

RMSE =

√√√√ 1
T

T∑
i=1

‖pi − p̂i‖2 (28)

where p stands for the azimuth angle of the source. To prevent the
results from being dependent on a specific reflection pattern of a
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TABLE I
PARAMETERS VALUES FOR THE MRL AND THE DDS ALGORITHMS

certain room section, we repeated the simulation with rotations
of the constellation described above. The rotation angle was
generated uniformly between 0◦ ÷ 360◦. The positions of the
second microphone, the training points and the test points were
rotated by this angle, with respect to the first microphone. The
RMSE was averaged over 50 rotations of the constellation.

The values of the parameters for the MRL and DDS algo-
rithms are given in Table I, where “med” stands for the median
of the distances between all the training samples. In general, we
chose the variances of all the Gaussians to be proportional to
the median distance “med,” that roughly expresses the limit for
which the distances are monotonic with respect to the angle, as
discussed in Section V-B. The exact proportion was determined
by an exhaustive search, and a similar search was conducted for
determining the values of all the other parameters as well.

The results of the MRL and the DDS algorithms are compared
with that obtained by the classical GCC algorithm [12] for both
noisy and reverberant conditions. The GCC algorithm is based
on finding the maximum of the generalized cross-correlation
function, defined as:

R̂g
yx(τ) =

1
2π

∫ ∞

−∞
Ψg (ω)Ŝyx(ω)ejωτ dτ (29)

where τ is a time-lag and Ψg (ω) is a weight function. We used
the generalized cross-correlation-phase transformation (GCC-
PHAT) variant, which is associated with the weight function
Ψg (ω) = 1/|Ŝyx(ω)|, since it is considered more robust to re-
verberation. The CPSD between the two measurements was
estimated using the same parameters as defined in Section V-A.

For comparing between the three algorithms we used differ-
ent levels of diffuse noise with speech-like PSD. A spherically
diffused noise field was generated according to [48], using the
simulator provided in [49]. In the first scenario we examine the
algorithms’ performance for different reverberation times with
fixed SNR of 5 dB and 20 dB. In the second scenario the rever-
beration time is set to 300 ms and 600 ms, and different noise
levels are examined. In all scenarios the training set is generated
with a fixed SNR level of 10 dB and with the same reverbera-
tion time as that used in the test phase. The RMSE of the three
algorithms in both scenarios, are shown in Fig. 4(a) and (b),
respectively.

It can be seen in Fig. 4(a) that the GCC-PHAT per-
forms well for low reverberation. However, its performance
deteriorates gradually as reverberation increases, and becomes

Fig. 4. The RMSE of GCC-PHAT, DDS and MRL (a) as a function of the
reverberation time (SNR=5, 20 dB), and (b) as a function of SNR (T60 =
300, 600 ms).

inferior compared with the performance of both the DDS and
the MRL algorithms. In high reverberation, the GCC-PHAT is
incapable of distinguishing between the direct arrival and the
reflections. A misidentification of the direct path, results in a
large estimation error. The proposed algorithms are more robust
to reverberation, since the variations in the entire RTFs are taken
in account. In addition, the GCC is significantly affected by the
amount of noise, whereas the semi-supervised approaches are
almost invariant regarding the noise level.

Similar behaviour is observed in Fig. 4(b) in which different
noise levels are examined. Here too, the GCC-PHAT method
behaves well in high and moderate SNR conditions, and its
performance degrades as noise level increases. When the mea-
surements are contaminated by a significant amount of noise, the
correlation between the two measurements is also very noisy,
and the GCC-PHAT cannot correctly identify the peak corre-
sponding to the direct path. On the contrary, the semi-supervised
algorithms are much more robust with respect to the background
noise, and most of the time obtain lower error. These type of
algorithms can compensate for the information loss caused by
the poor conditions, by capitalizing on the prior information
inferred from the training samples.
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Fig. 5. The RMSE of the MRL algorithm when trained with T60 = 500 ms,
and when trained with the same T60 as in the test stage (SNR=10 dB for both
the training and the test).

We also observe that most of the time the MRL approach ex-
hibits better results compared with the DDS method. The reason
for the visible gap between the RMSEs of the two algorithms
is related to the different ways they utilize unlabelled data, and
will be further elaborated in Section VI. In addition, in Fig. 4(b)
we observe that the minimum error for the MRL method, is
obtained for an SNR of 10 dB, when the noise level in the test
samples matches exactly the noise level used for training. How-
ever, in general the algorithm performs well even when the test
and the training do not meet exactly the same noise conditions.

Another aspect to be investigated is the algorithm sensitivity
to changes in the environmental conditions between the training
and the test stages. In Fig. 5, we see the RMSE of the MRL
algorithm for different reverberation times, when trained with
a fixed reverberation time of 500 ms. For comparison, we also
present the error obtained for each reverberation time when the
test samples are measured at the same reverberation level as in
the training (as was done in the previous simulations). It can
be observed that for small differences in the reverberation time
of around 100 ms, the increase in the error is quite small (less
then 0.5◦). However, as the difference in the reverberation time
between the training and the test increases, the error deviates
significantly from that obtained ideally when the same reverber-
ation time is used for both the training and the test. From the
manifold perspective, slight variations in the reverberation time
have a mild effect on the manifold structure, while significant
variations correspond to large differences in the geometry of the
associated manifolds.

Finally, we examine the iterative process of the MRL al-
gorithm through the following sequential simulation. We used
reverberation time of 300 ms and diffuse noise with 20 dB
SNR. This time we examined a wider range of angles between
0◦ ÷ 180◦. The initial adaptation was based on only 19 labelled
samples, creating a grid of 10◦ distance between adjacent la-
belled samples, as depicted in Fig. 2. We conducted 10 cycles
of the sequential algorithm, each comprised of both stages of
system adaptation and localization. In the localization stage,
we estimated the angles of 80 new samples from unknown lo-
cations. The total RMSE of the entire set was computed. In
the following iteration, these 80 new samples were treated as

Fig. 6. The RMSE of an iterative simulation of MRL for angles in the range
0◦ ÷ 180◦, where 80 unlabelled points are added in each iteration. T60 =
300 ms and SNR=20 dB

Fig. 7. The estimated expansion weights a∗ with respect to the corresponding
angle. The blue line corresponds to the weights of u = 441 unlabelled examples,
while the red x-marks correspond to the weights of l = 19 labelled examples.

additional unlabelled data, utilized for system adaptation. The
results are summarized in Fig. 6.

In this figure we observe that the RMSE decreases as a func-
tion of the number of iterations, indicating that the unlabelled
data has an important role in reducing the estimation error. How-
ever, after a considerable amount of unlabelled data is accumu-
lated, the process stabilizes on a certain error, and additional
samples are redundant.

VI. DISCUSSION

In the previous section we demonstrated the robustness of
the MRL and the DDS algorithms to noisy and reverberant
conditions. We have also seen that the performance of the DDS
method is inferior with respect to that of the MRL algorithm. In
this section we discuss the interfacing points of both algorithms,
on the one hand, and highlight the major differences between
them, on the other hand.

To investigate the role of the unlabelled data in the MRL
method, we inspect the expansion weights a∗ derived by the
algorithm when using the kernel in (6) normalized by the sum
of its rows. In Fig. 7, the N entries of the vector a∗ in (15), are
depicted with respect to the associated angle. The red x-marks
correspond to the weights {ai}l

i=1 of l = 19 labelled examples
while the blue line corresponds to the weights {ai}u

i= l+1 of
u = 441 unlabelled examples. We observe a monotonic, almost
linear, behaviour of the coefficients with respect to the angle.
The obtained behaviour of the MRL coefficients, resembles the
monotonic relation between the single-element diffusion map-
ping Φ1(·) and the corresponding angle, depicted in Fig. 3(b).
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The correspondence between the two algorithms, suggests that
they share similar aspects which lead to a parametrization of the
manifold and recovery of the DOA of the source.

However, we have seen that the MRL is a better localizer
compared with the DDS. The difference between the two, is
attributed to their different utilization of the unlabelled data.
In the DDS algorithm, the unlabelled data are used only in the
learning phase, and the estimation merely comprises the posi-
tions of the labelled samples. In contrast, in MRL the unlabelled
data do not only take part in the recovery of the manifold, but
also participate in the estimation itself, involving both labelled
and unlabelled data (15). Another advantage of MRL over DDS
is that it is sequentially updated, hence, it is more suitable for
on-line implementations.

VII. CONCLUSION

A novel approach for semi-supervised localization, based on
state-of-the-art manifold learning techniques, was presented. A
set of representative samples in a defined room section is utilized
for learning the acoustic manifold of the RTFs and building a
data-driven model. Equipped with this knowledge, we find the
function relating the samples and the corresponding positions by
solving an optimization problem in an RKHS. The optimization
is based on manifold regularization and involves smoothness
constraints of possible solutions with respect to the manifold.
According to the representer theorem the solution is given as an
expansion in terms of a kernel function sampled at the training
points. The implementation of the proposed algorithm is for-
mulated in an adaptive manner. The initialization is conducted
with only few labelled samples, and then the system is gradually
adapted as new unlabelled samples are received. Simulation re-
sults confirm the algorithm robustness in noisy and reverberant
environments. It is important to note that the results of the algo-
rithm were only demonstrated in a simulated room setup, while
the performance on real recordings as well as the examination
of other complex environments, are left for future work.

Integrating between traditional signal processing techniques
and novel machine learning tools may be the key for better
addressing adverse conditions, such as high noise levels and
reverberations, that are the main causes for performance degra-
dation of classical localization approaches. The current results
indicate that the manifold perspective exhibits an interesting in-
sight into the general structure of the acoustic responses and
offers better solutions for common signal processing problems.

APPENDIX A

We define the integral operator on functions, associated with
the kernel k, by the following integral transform:

[Tkf ] =
∫

k(t, s)f(s)ds = g(t). (30)

The eigenfunctions {ψi(·)} and eigenvalues {λi} of the integral
operator satisfy:

[Tkψi ] =
∫

k(t, s)ψi(s)ds = λiψi(t). (31)

According to Mercer’s theorem [38], the kernel k can be ex-
panded by:

k(t, s) =
∑

i

λiψi(t)ψi(s) (32)

where the convergence is absolute and uniform. The eigenfunc-
tions {ψi(·)} form an orthogonal set and the RKHS can be
defined as the space of functions spanned by this set:

Hk =

{
f |f(·) =

∑
i

αiψi(·) and ||f ||Hk
< ∞

}
(33)

where the RKHS norm is defined by the inner product:

〈f, g〉 =

〈∑
i

αiψi(·),
∑

j

βjψi(·)
〉

=
∑

i

αiβi

λj
. (34)

The reproducing property holds in this representation, since

〈f(·), kh(·)〉 =

〈∑
i

αiψi(·),
∑

j

λjψj (h)ψj (·)
〉

=
∑

i

∑
j

αiλjψj (h) 〈ψi(·), ψj (·)〉

=
∑

i

αiψj (h) = f(h) (35)

APPENDIX B

Theorem 1: The minimizer of the optimization problem (13)
has an expansion in terms of labelled and unlabelled examples:

f ∗(h) =
N∑

i=1

aik(h̄i ,h) (36)

Proof: Any function f ∈ Hk can be uniquely decomposed
into two components, where one is lying in the linear sub-
space spanned by the kernel functions in the training examples
f‖ = span

{
k(h̄i , ·), i = 1, . . . , N

}
and the other is lying in the

orthogonal complement f⊥

f = f‖ + f⊥ =
N∑

i=1

aik(h̄i ,h) + f⊥ (37)

where 〈f⊥, k(h̄j , ·)〉 = 0 for all 1 ≤ j ≤ N .
The above orthogonal decomposition and the reproducing

property together, show that the evaluation of f on any train-
ing point h̄j , 1 ≤ j ≤ N is independent of the orthogonal
component f⊥:

f(hj ) =
〈
f(·), k(h̄j , ·)

〉

=

〈
N∑

i=1

aik(h̄i , ·) + f⊥(·), k(h̄j , ·)
〉

=

〈
N∑

i=1

aik(h̄i , ·), k(h̄j , ·)
〉

=
N∑

i=1

aik(h̄i , h̄j ). (38)

Consequently, the value of the empirical terms involving the
loss function and the intrinsic norm in the optimization problem
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(the first and the third terms, respectively), are independent of
f⊥. For the second term (the norm of f in Hk ), since f⊥ is
orthogonal to

∑N
i=1 aik(hi , ·) and only increases the norm of f

in Hk , we have

‖f‖2
Hk

=
∥∥∥

N∑
i=1

aik(h̄i ,h) + f⊥(·)
∥∥∥2

Hk

=
∥∥∥

N∑
i=1

aik(h̄i ,h)
∥∥∥2

Hk

+
∥∥∥f⊥(·)

∥∥∥2

Hk

≥
∥∥∥

N∑
i=1

aik(h̄i ,h)
∥∥∥2

Hk

. (39)

Therefore setting f⊥ = 0 does not affect the first and the third
terms of (13), while it strictly decreases the second term. It
follows that any minimizer f ∗ of (13) must have f⊥ = 0, and
therefore can be represented as: f ∗(h) =

∑N
i=1 aik(h̄i ,h). �
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